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Generalities

▶ Natural and artificial hydrosystems exhibit large variability in space and time, so
deterministic laws can not explain them completely.

▶ A hydrological variables is thus considered as a random variable as it is not
explain totally based on other variables.

▶ By incorporating probability theory is possible to deal with a random variable’s
uncertainty.

▶ Outcome of mathematical models aimed to represent real world processes (e.g.
the Richard’s equation to model groundwater flow) are uncertain as model’s
independent variables come from experiments (e.g. rain gauge) and model’s
parameters change within a range. Also, model’s structure might not represent
correctly the physical phenomena so it exhibits uncertainty.

▶ It would be desirable to build precise models to predict the occurrence of an
event, but this is not possible. So, probability models are build to determine the
likelihood of the occurrence of an event.

▶ However, the uncertainty estimates of a hydrological random variables is limited
by:
▶ Inherent nature’s variability
▶ Insufficient knowledge of governed hydrological laws
▶ Quantity and quality of data.



Sample space and events

Random event (A)

A random event is an outcome of an experiment where observations are taken under
fair conditions and no bias are expected toward a particular result. It can be a
collection of points in Ω.

Sample space (Ω)

The sample space, also known as the universe or the population, is a set with the
collection of all the observations (or all the possible values) of a variable within an
experiment. Each point in the sample space is a sample point and one or more points
can constitute an event. An event is thus a subset of Ω.

Reservoir storage
In a reservoir that store an amount of water of S , water level varies from 0 to c.
Water level storage is divided into: depth storage, supply storage and flood-control

storage (see the figure).
Accordingly, the sample space, Ω, is the storage at a given time defined as
Ω ≡ S : 0 ≤ S < c. Note that, Ω is continuous on [0, x), there is an infinite number
of points. However Ω, can be divided into a discrete number of states depending of
the engineer’s judment.



Sample space and events

Reservoir storage
Consider four states (ω) of a reservoir storage S ,
so ωi ≡ S : (i − 1)c/4 ≤ S < ic/4, i = 1, · · · , 4.

In the figure, a) represents the four
storage states; b) is the frequency
of the states; c) is the events of in-
terest that combine states, where
rectangle width is proportional to
the state frequency, and d) shows
pie charts of all possible events
(shaded area) based on the four
states. For instance, the simple
event A = ω4 ≡ A4 implies that
3c/4 ≤ S < c. The event A =
ω1 + ω2 ≡ B ≡ S : 0 ≤ S < c/2
is a compound event because it
comprise of two single events,
A1 ≡ S : 0 ≤ S < c/4 y A2 ≡
S : c/4 ≤ S < 2c/4.

In general, A is subset of Ω (A ⊂ Ω) and Ac is the complement of A that consist of all
outcomes of Ω that are not in A.



Null event, intersection and union

Events in Ω can be related in different ways. Here is some definitions:

Mutually exclusive events

If A1 and A2 are events in Ω, they are mutually exclusive or disjoint if the occurrence
of one event excludes the occurrence of the other. This means, for instance, that none
of the points in A1 are in A2 or vice versa. In this case, the null event is constituted by
A1 and A2 and denote as A1A2 = A1 ∩ A2 = ∅. In the reservoir storage example, A
and B are mutually exclusive and, in general, all the ωi events.

Intersection
An intersection is constituted by all the common sample points in A events, it means,
points that are in all the Ai events. These events are also not mutually exclusive. If
two events A1 and A2 are not mutually exclusive, their intersection is denoted by
A1 ∩ A2 so that A1 ∩ A2 ̸= ∅. In the reservoir storage example, A ∩ Bc is the event
S : 3c/4 ≤ S < c which correspond to ω4.

Union
The union of A events constitutes their joint occurrence and it comprises an event
that contain all the sample points in As. If we have two events A1 and A2, their union
is denoted as A1 ∪ A2 (A1 + A2). For instance, in the reservoir storage example, the
states or events A1 = ω1 and A2 = ω2 constitute the B event, so B = A1 ∪ A2.

Note that event intersections and unions can create new events within Ω.



Venn diagram and event space

To undestand the Venn diagram is important consider the following:

▶ A set is a collection of points in a sample space Ω.

▶ A Venn diagram provides a visual representation of set operations such as:
complement, union, intersection and combinations of them.

▶ Sample points, sample spaces and events are sets.

Event space

The event space (℘) is constituted by all possible event combinations. This means, all
possible outcomes of the experiment included in Ω. For instance, the pie charts in the
reservoir storage example. ℘ has the following properties:

1. Ω ∈ ℘

2. If A ∈ ℘, then Ac ∈ ℘

3. If A1 ∈ ℘ and A2 ∈ ℘, then A1 + A2 ∈ ℘

4. If ∅ ∈ ℘, then Ac ∈ ℘

5. If A1 ∈ ℘ and A2 ∈ ℘, then A1A2 ∈ ℘

For instance, the event space of the reservoir storage example is:

℘ = {A1,A2,A3,A4,A1 + A2,A2 + A3,A3 + A4,A1 + A2 + A3,

A2 + A3 + A4,A1 + A2 + A3 + A4,∅}



Venn diagram and event space
▶ a) is the sample space Ω

constituted by all possible
experiment outcomes.

▶ c) and b) show the simple events
(shaded rectangles) A and B.
Note that ω represent an
outcome of the event A.

▶ d) and e) show the union
(A + B) and the intersection
(A ∩ B = AB), respectively.

▶ f) and g) show the AcB and the
ABc events.

▶ h) shows event C that intersects
A and B.

▶ i) and j) show the following
compound events (associative)
(A + B) + C = A + (B + C)

(A ∪ B) ∪ C = A ∪ (B ∪ C)

(AB)C = A(BC)

(A ∩ B) ∩ C = A ∩ (B ∩ C)

▶ k) and l) show the following
compound events (distributive)
(A + B)C = AC + BC

(A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C)

AB + C = (A + C)(B + C)

(A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C)



Some examples

Reservoir storage
The continuous sample space of a reservoir storage is denoted by
Ω ≡ {S : 0 ≤ S < c}, where maximum storage is c. Accordingly, the event space can
be defined as ℘ ≡ {S : x ≤ S < y}, where 0 ≤ x ≤ y < c for any pair of x and y in
[0, c). Lets consider the following events: A ≡ {S : 0 ≤ S < c/3},
B ≡ {S : c/4 ≤ S < c/2} and C ≡ {S : c/5 ≤ S < 3c/5}. The following events are
defined using event’s algebra:

▶ AB ≡ A ∩ B ≡ {S : c/4 ≤ S < c/3}
▶ A+ B ≡ A ∪ B ≡ {S : 0 ≤ S < c/2}
▶ (A+ B)C = AC + BC ≡ {S : c/5 ≤ S < c/2}
▶ AB + C = (A+ C)(B + C) ≡ C ≡ {S : c/5 ≤ S < c/2}

In engineering, problems sometimes involve data from join observations, that in many
cases are recorded at the same time and location. For instance: Dissolved oxygen and
biochemical oxygen demand in stream waters to assess river pollution, Intensity and
duration of storm rainfalls at a rain gauge and Wind speed and direction at a weather
station. All these cases involve two variables whose 2D sample space can be discrete,
continuous or both.
Commonly, there is interest in the possible outcomes of an experiment given that
event A has occurred. This means that as A has occurred, the sample space is
restricted or conditioned to the set representing A. For instance, if an engineer is
interested in sea waves exceeding 2m in height (h) and wave direction ranging from
25o to 120o , the original sample space Ω ≡ {(h, θ) : h > 0 and 0o ≤ θ ≤ 360} is thus
reduced. This concept of conditional sample space will be relevant to the study of
conditional probabilities.



Some examples

Number of rainy days and total rainfall
Let’s say that one is interested in the number of
rainy days and the total amount of rainfall in a
period between the first and the 10th of September
(10 days) nearby Bogota, in an agricultural region
subjected to irrigation. If there is rain gauge at the
location of interest, the sample space is defined as
Ω ≡ {(i , x) : i = 0, 1, 2, · · · , 10; and 0 ≤ x},
where i is the number of rainy days and x is the
total rainfal during i in millimeters. For instance,
farmers know that if the i > 3 days and x > 20
mm no irrigation is needed. These random events
can be denoted as A ≡ {(i , x) : i > 3 and x > 20}.
Note that event Ac ≡ {(i , x) : i < 4 and x ≤ 20}
is the event where irrigation is required. Supposed
that there are two mutually exclusive events that
describe two different circumstances:
B ≡ {(i , x) : 3 ≤ i < 5 and x ≥ 10} and
C ≡ {(i , x) : 1 ≤ i < 3 and 2 ≤ x < 10}. In this
case AB = ∅. According to algebra of events, the
following new events can be established also part
of the event space ℘
▶ A+ B ≡ {(i , x) : i > 2 and x ≥ 10}
▶ B + C ≡ {(i , x) : 1 ≤ i < 5 and x ≥ 2}
▶ AB ≡ {(i , x) : i = 4 and x > 20}



Interpretation of probability

Probability

Probability is a math branch that deal with random events. For instance, the random
experiment of tossing a coin n times results in n mutually exclusive and equally likely
outcomes, and for nA, that correspond to a certain attribute A (e.g. coin tail or coin
head), the probability of obtaining A is nA/n. If A represents coin tail and B
represents coin head, the probability of A and B using a fair coin is 0.5 for both. This
probability is called prior probability as it is obtained from deductive reasoning and not
requires verification. In the case of a no fair coin, it is not possible to know the prior
probability as the A and B are not equally likely. So asking about the probability of
obtaining tail or head is like asking, what is the probability that tomorrow will be a
rainy day? or, what is the probability that a hurricane hits Florida next year?. To
answer this questions the posterior probability or frequency needs to be estimated
based on previous observations under uniform/stable conditions. For discrete variables
like the number of rainy days in a year, the relative frequency, p, is estimated for each
number of rainy days from the historical data. In the case of continuous variables, p is
estimated within a range, let’s say, the probability that daily rainfall is greater than 20
mm and lesser than 50 mm. There are cases in which the situation for analysis do not
fit into the framework of repeated outcomes within the experiment. For instance,
what is the probability that the Chingaza system meets the water demand for the next
25 years? This kind of problems are part of what is known subjective probability that
contrasts with objective methods based on theory or observation. Subjective
probabilities are assigned based on experience and personal judgement and play an
important role in the Bayesian approach.



Probability axioms

Probability axioms

Probability theory is founded on the probability axioms and are applied to prior,
posterior or subjective probabilities. To define the axioms is necessary to define a
function, f . A function is a mathematical rule that associate/map one value or point
from the domain with one and only one value or point in the counterdomain. For
instance in the reservoir example, the water level h can take values from
hmin ≤ h < hsup (domain). This values can be mapped by the stage-volume function
s = f (h) to estimate the storage s whose counterdomain is 0 ≤ s < c. Recalling the
concepts of sample space and event space, in probability theory, a probability function,
Pr , is a function whose domain is ℘ and the counterdomain is 0 ≤ Pr ≤ 1. This
means that the probability of, let’s say an event A (Pr [A]) in ℘ is a mapped value
within [0, 1]. In terms of Ω, Pr [A] is the sum of all the probabilities of the sample
points in A. For continuous variables where Ω is constituted by infinite number or
points, probabilities are assigned to areas or lenghts. The probability axioms are:

1. Pr [A] ≥ 0, for every A ∈ ℘

2. Pr [Ω] = 1

3. If A1 ∈ ℘, A2 ∈ ℘, and A1A2 = ∅, then Pr [A1 + A2] = Pr [A1] + Pr [A2]

where A, A1 and A2 are events that belong to the sample space.



Probability axioms

Reservoir storage
In the previous reservoir storage example, the reservoir storage S was discretized into
four states: ω1, ω2, ω3 and ω4, where the sample space is the set
Ω ≡ {A1,A2,A3,A4}, so Ai ≡ ωi ≡ {S : (i − 1)c/4 ≤ S ≤ ic/4} for i = 1, 2, 3, 4. As
observation of reservoir storage is made at the end of the operation year, 36 measures
of S has been recorded. The frequency analysis yields the following occurrence of Ai :
A1 = 5, A2 = 15, A3 = 10 and A4 = 6. According with the axiom 1:

Pr [A1] =
5

36
Pr [A2] =

15

36
Pr [A3] =

10

36
Pr [A4] =

6

36

Axiom 2 is satisfied as:

Pr [Ω] = Pr [A1 + A2 + A3 + A4] =
5

36
+

15

36
+

10

36
+

6

36
= 1

If we consider two mutually exclusive events: C = A2 ≡ {S : c/4 ≤ S < c/2} and
D = A3 + A4 ≡ {S : c/2 ≤ S < c}, C + D = A2 + A3 + A4, so:

Pr [C + D] = Pr [A2 + A3 + A4] =
15 + 10 + 6

36
=

15

36
+

16

36
= Pr [C ] + Pr [D]

This satisfy axiom 3.



Addition rule

The axiom 3 can be extended to any sequence of mutually exclusive events
A1,A2, · · · ,Ak ∈ ℘, so that, AiAj = ∅ for any i ̸= j where i , j = 1, 2, · · · , k. Axiom 2
can be applied to an event A and to its complement Ac . As A and Ac are mutually
exclusive events, Pr [A+ Ac ] = Pr [A] + Pr [Ac ]. If A+ Ac = Ω,
Pr [A+ Ac ] = Pr [Ω] = 1. From this, the probability of the complement of A is
Pr [Ac ] = 1− Pr [A].

Flood occurrence
Suppose that one want to analyse the number of flood occurrences, N, per year.
Accordingly, the engineer is interested in evaluating the likelihood of the ocurrence of
such a flood in any year. If Ω ≡ {N : N ≥ 0} and A ≡ {N : N > 0} (occurrence of at
least one flood), therefore, Ac ≡ {N : N = 0} (occurrence of no floods). According to
annual records of floods in a river gauge station between 1936 and 1995, six floods
occurred in: 1945, 1951 (twice), 1953, 1970 and 1992. So that, the probability of
flood ocurrence is Pr [A] = 6

65
= 0.092 and the probability of no floods is

Pr [Ac ] = 1− Pr [A] = 1− 6
65

= 0.908. Pr [A] = 0.092 indicates the likelihood of the
occurrence of at least one flood and it is a measure of the risk affecting the river
nearby area.



Addition rule

Suppose that we have two events, A and B, that are not necesarily mutually exclusive.
Accordingly, A+ B = A+ AcB, so A and C = AcB are mutually exclusive. Using the
axiom 3:

Pr [A+ B] = Pr [A+ AcB] = Pr [A] + Pr [AcB] = Pr [A] + Pr [C ]

Similarly, Pr [B] can be estimated as:

Pr [B] = Pr [AcB] + Pr [AB]

Replacing in the equation above, the addition rule establishes that:

Pr [A+ B] = Pr [A] + Pr [B]− Pr [AB]

If A and B are mutually exclusive events ( AB = ∅ ), Pr [AB] = 0, so:

Pr [A+ B] = Pr [A] + Pr [B]



Further properties of probability functions

Probabilty of null event

The probability of the null event is zero, this means

Pr [∅] = 0

Probabilty of a contained event

If an event A is contained in a event B, the probability of A does not exceed the
probability of B. This means:

Pr [A] ≤ Pr [B] if A ⊂ B

Boole’s inequality

If there is n events Ai where i = 1, 2, · · · , n, the probability of the union of the n
events does not exceeed the sum of their probabilities, that is:

Pr [A1 + A2 + · · ·+ An] ≤ Pr [A1] + Pr [A2] + · · ·+ Pr [An]



Further properties of probability functions

Dam failure
In a earthquake-prone area, the failure of dam can be produced by two events: Event
A means the occurrence of large flood exceeding the capacity of the dam’s spillway,
and event B means a severe, destructive earthquake that cause the collapse of the
dam. The analysis performed by the consultant yields that the Pr [A] = a (flood
exceeding) and Pr [B] = b (earthquake occurrence). Accordingly, the probability of
dam’s failure is given by:

Pr [A+ B] = Pr [A] + Pr [B]− Pr [AB]

However, the joint event AB is quite improbable. According to the Boole’s inequality:

Pr [A+ B] ≤ Pr [A] + Pr [B]

This is equivalent to

Pr [A+ B] ≈ Pr [A] + Pr [B] = a+ b

According to the literature, the values of a and b are 0.02 and 0.01, respectively, so:

Pr [A+ B] ≈ 0.02 + 0.01 = 0.03

This indicate that the probability of the dam’s collapse is around 3% in a given year.



Conditional probability and multiplication rule

In many practical application, it is required to inquiry the probability of an event given
the occurrence of one or more events; this is known as the conditional probability. For
instance, given that a dam has not failed in the last 100 years, one is interested in the
probability of no failure of the dam for another 100 years. For instance, given that
high streamflow in a river have been observed in January, February and March, an
engineer may be interested in the probability of that streamflow will exceed 2000 m3/s
in April. The questions in these examples can be solved only using the concept of
conditional probability.

Conditional probability

Let A and B two events in the sample space Ω of an experiment. Given that the
Pr [B] > 0, the conditional probability of event A given that B has ocurred, is defined
as:

Pr [A|B] =
Pr [AB]

Pr [B]

where Pr [B] = 0 means that Pr [A|B] is undefined. Note that Ω is reduced to B and
Pr [B] is known and the marginal probability of event B. According to the frequency
approach to estimate probabilities, Pr [A|B] can be calculated as:

Pr [A|B] =
Pr [AB]

Pr [B]
=

nAB/n

nb/n
=

nAB

nb

where nAB and nB are the number of AB and B events, respectively, and n is the total
number of events.



Conditional probability and multiplication rule

Conditional probability

There are cases where Pr [A|B] and Pr [B] can be estimated directly, whereas the join
probability Pr [AB] is unknown. This can be estimated as:

Pr [AB] = Pr [A|B]Pr [B] = Pr [B|A]Pr [A]

From axiom 2, Pr [A|B] ≤ 1 and Pr [B|A] ≤ 1, the following inequalities also hold:

Pr [A|B] ≤
Pr [A]

Pr [B]
Pr [B|A] ≤

Pr [B]

Pr [A]

Multiplication rule

The concept of conditional probability can be extended to any number of events. For
instance for events A, B and C :

Pr [ABC ] = Pr [A|BC ]Pr [BC ] = Pr [A|BC ]Pr [B|C ]Pr [C ]

For m events, the joint probability of the m events is:

Pr [A1A2A3 · · ·Am] = Pr [A1|A2A3 · · ·Am]Pr [A2|A3A4 · · ·Am] · · ·Pr [Am]

This is known as the multiplication rule of probability theory. This rule is useful for
experiments defined in terms of stages (e.g successive events).



Conditional probability and multiplication rule

Water distribution
Suppose that in a city whose surface area is approximately flat and rectangular with
sides 10 km and 20 km and area of 200 km2, there is aquaduct network where pipes
are distributed according to the figures. The city area is uniformely covered by the
network so that, pressure and flow rates are uniform trhoughout the network.
Accordingly, the probability of water loss in any network segment is equal.

Suppose that an engineer is interested to analyse two events:
A ≡ {a severe water loss occurs in location u ≡ (u1, u2) where 0 < u1 ≤ 6 km, 0 <
u2 ≤ 3 km}, and B ≡ {a severe water loss occurs in location v ≡ (v1, v2) where 4 <
v1 ≤ 12 km, 2 < v2 ≤ 6 km}. The probability of occurrence of A and B is proportional
to the area corresponding (see the figure) to each event:

Pr [A] =
(6x3)

200
= 0.09 Pr [B] =

(12− 4)x(6− 2)

200
=

8x4

200
= 0.16

Suppose that one want to know the probability of event A, given that a loss occurs in
the area affected by B. To estimate this, it is needed to know the area affected by B
within which A also occurs. The area for the event AB is (6− 4)x(3− 2) = 2 km2.
Pr [AB] can be calculated as Pr [AB] = 2

200
= 0.01, or following the addition rule as:

Pr [AB] = Pr [A] + Pr [B]− Pr [A+ B] = 0.09 + 0.16−
48

200
= 0.01

Using the condition probability definition, the probability of Pr [A|B] is:

Pr [A|B] =
Pr [AB]

Pr [B]
=

0.01

0.16
= 0.0625



Stochastic independence

When the ocurrence of an event A is not affected by the ocurrence of an event B, the
two events are stochastically independent. This means that:

Pr [A|B] = Pr [A] if Pr [B] > 0 and Pr [B|A] = Pr [B] if Pr [A] > 0

According to conditional probability, if A and B are independent:

Pr [A ∩ B] = Pr [AB] = Pr [A]Pr [B]

This equation means that the probability of the joint occurrence of two independent
events A and B is equal to the product of their marginal probabilities. According to
addition rule, for two idependent events A and B, the probability of the union of the
two (or more) events is:

Pr [A+ B] = Pr [A] + Pr [B]− Pr [A]Pr [B]



Stochastic independence

Dam reliability
Let’s consider again the example given before, where a dam’s failure can be caused
because of either a flood exceeding the design capacity of the spillway (event A) or an
earthquake that trigger the dam’s collapse (event B). Recall that the probabilities of
occurrence of A and B in a year are give by Pr [A] = a and Pr [A] = b, respectively. If
A are B independent events, their joint probability is Pr [AB] = Pr [A]Pr [B] = ab. The
probability of the dam’s failure is given by the probability of the union

Pr [A+ B] = Pr [A] + Pr [B]− Pr [AB] = a+ b − ab

For a = 0.02 and b = 0.01, Pr [A+ B] = 0.0298. This value is very close to 0.03
resulted after using the Boole’s inequality because the joint probability of the two
events plays a minor role in risk assessment.
The sample space of this experiment is shown in the figure
and it is constituted as Ω ≡ {AB,ABc ,AcB,AcBc}. The
dam’s failure is represented by A + B = (AB) ∪ (ABc ) ∪
(AcB). Conversely, the probability of dam’s continuance is
Pr [AcBc ] = 1 − Pr [A + B] = 1 − (a + b − ab) = 1 −
(0.02+0.01−0.01x0.02) = 0.9702. The probability of dam’s
continuance is more than 97% in a year.

Is the engineer is interested in knowing the dam’s reliability

during m years (life time), the probability of failure must be estimated after
1, 2, · · · ,m years of the dam’s construction. Accordingly, the dam’s continuance after
1 year is Pr [AcBc ]. As the experiment is repeated in subsequent years, la probability
of survival after 2 years is:

Pr [(AcBc )1 ∩ (AcBc )2] = Pr [(AcBc )1(A
cBc )2] = Pr [(AcBc )1]Pr [(A

cBc )2|(AcBc )1]



Stochastic independence

Dam reliability
Regarding that the events A and B occurring in given year are independent from those
occurring in other year, following the definition of stochastic independence
Pr [(AcBc )2|(AcBc )1] = Pr [(AcBc )2]. This means that:

Pr [(AcBc )1(A
cBc )2] = Pr [(AcBc )1]Pr [(A

cBc )2]

If the probability of dam’s continuance is same year after year
Pr [(AcBc )1(AcBc )2] = Pr [(AcBc )]2 = [1− (a+ b − ab)]2. So that, the probability of
dam’s continuance after m years is

Pr [(AcBc )1(A
cBc )2 · · · (AcBc )m] = Pr [(AcBc )]m = [1− (a+ b − ab)]m

For m = 50, Pr [(AcBc )1(AcBc )2 · · · (AcBc )50] = 0.970250 = 0.2203. This means that
during the first 50 years the design has a realiability of 22% whereas the risk of failure
is 78% (complementary probability). The risk of failure in the iht year is given by the
probability that either A or B or both events ocurr in the ith year. This probability is
given by:

Pr [(AcBc )1(A
cBc )2(A

cBc )i−1 · · · (A+ B)i ] = Pr [(AcBc )]i−1Pr [(A+ B)i |(AcBc )i−1]

= Pr [(AcBc )]i−1Pr [(A+ B)i ]

= [1− (a+ b − ab)]i−1(a+ b − ab)
As we have seem before, this probability represent the design
realiability rescaled by the risk of failure. For instance, the
probability of failure after 10 years of operation is:

Pr [(AcBc )1(A
cBc )2 · · · (AcBc )9(AB)10] = 0.97029x0.0298 = 0.0227.



Total probability and Bayes’ theorems

Total probability

Sometimes the probability of an event A can no be obtanined directly but, it can be
estimated based on the probabilities of the occurrence of other events Bi where
i = 1, 2, · · · , n. The probability of A will thus depend on which of the Bi events has
ocurred and it will be the expected probability which is the average probability
weighted by those of Bi . Consider n Bi mutually exclusive and collectively exhausted
events where i = 1, 2, · · · , n and BiBj = ∅ for i ̸= j , and B1 + B2 + · · ·+ Bn = Ω.
The probability of other event A (see the figure) can be given
by:

Pr [A] = Pr [AB1] + Pr [AB2] + · · ·+ Pr [ABn] =
n∑

i=1

Pr [ABi ]

=
n∑

i=1

Pr [A|Bi ]Pr [Bi ]

This expression is known as the theorem of total

probability. In words, this theorem indicates that the probability of an event A that
ocurr concurrently with a set of multiple Bi events is equal to the sum of the
conditional probability of A given Bi and the marginal probability of Bi .



Total probability and Bayes’ theorems

Bayes’ theorem

From the theorem of total probability, it might be of interest to estimate the
probability of Bj given the ocurrence of an event A. According to the conditional
probability definition:

Pr [Bj |A] =
Pr [BjA]

Pr [A]

if the joing probability is Pr [BjA] = Pr [A|Bj ]Pr [Bj ], replacing in the equation above:

Pr [Bj |A] =
Pr [A|Bj ]Pr [Bj ]

Pr [A]

According to the total probability theorem for Pr [A] and replacing in the equation:

Pr [Bj |A] =
Pr [A|Bj ]Pr [Bj ]∑n
i=1 Pr [A|Bi ]Pr [Bi ]

This equation is known as the theorem of Bayes.



Total probability and Bayes’ theorems

Water quality
Consider the concurrent data of dissolved oxygen (DO) and biochemical oxygen
demand (BOD) recorded in 38 sites on the Blackwater River, England (see table). It is
assumed that the samples are taken from the same population given the similarities in
water usages. According to the data means (µ) of 7.5 mg/l and 3.2 mg/l,
respectively, the following mutually exclusive and collectively exhaustive events are

defined (see figure):

B1 ≡ {DO ≤ 7.5 mg/l, BOD > 3.2 mg/l}
B2 ≡ {DO > 7.5 mg/l, BOD > 3.2 mg/l}
B3 ≡ {DO > 7.5 mg/l, BOD ≤ 3.2 mg/l}
B4 ≡ {DO ≤ 7.5 mg/l, BOD ≤ 3.2 mg/l}

By using relative

frequencies (see figure), Pr [B1] = 17/38 = 0.45,
Pr [B2] = 0/38 = 0,Pr [B3] = 19/38 = 0.50 and Pr [B4] = 2/38 = 0.05. The standard
deviations (σ) of DO and BOD data sets are 1.0 mg/l and 0.5 mg/l, respectively. Let
A be the event defined by the concurrent values of DO and BOD within the range
µ± σ so:

A ≡ {6.5 < DO < 8.5 mg/l, 2.7 < BOD < 3.7 mg/l}

Accordingly, the conditional probabilities of event A given Bi are
Pr [A|B1] = 7/17 = 0.41, Pr [A|B2] = is undefined as Pr [B2] = 0,
Pr [A|B3] = 11/19 = 0.58 and Pr [A|B4] = 1/2 = 0.5.



Total probability and Bayes’ theorems

Water quality
According to the total probability theorem,
Pr [A] = Pr [A|B1]Pr [B1] + Pr [A|B2]Pr [B2] + Pr [A|B3]Pr [B3] + Pr [A|B4]Pr [B4],
replacing in this expression
Pr [A] = 7

17
x 17
38

+ undefined x0 + 11
19
x 19
38

+ 1
2
x 2
38

= 7
38

+ 11
38

+ 1
38

= 19
38

= 0.5. This
means that the monitored vales of DO and BOD have a 50% of chance of lying in
range defined for the A event. Using the Bayes’s theorem:

Pr [B1|A] =
Pr [A|B1]Pr [B1]∑4
i=1 Pr [A|Bi ]Pr [Bi ]

=
(7/17)(17/38)

19/38
=

7

19
= 0.37

which means that if the monitored DO and BOD values lie in the previously defined
range, there is a 37% change that neither DO nor BOD exceed their sample means.
Applying the Bayes’ theorem for the other B events, Pr [B2|A] = 0, Pr [B3|A] = 0.05
and Pr [B4|A] = 0.58.

The Bayes’ theorem is quite useful for experiment performed in stages. The theorem is
useful to update event probabilities in an experiment with continuos incorporation of
data. By updating the prior probabilities, the engineer can assess the likelihood of
design events by incorporating the additional information given by conditioned
posterior probabilities. If one define as state the unknown quantification of the
population and considers that some sample of observations is available, Bayes’
theorem can be written as:

Pr [state|sample] =
Pr [sample|state]Pr [state]∑

all states Pr [sample|state]Pr [state]
In practice, the engineer has prior knowledge about the occurrences of different states
of a population. Using the Bayes’ theorem one can estimate the conditional
probability of a given state of that population after a sample has been observed.



Random variables and probability mass function

Random variables
A random variable X is any (physical) observed quantity whose posibilities of having a
value x are dictated according to a probability distribution. A random variable such as
daily precipitation or instataneous streamflow are uncertain or unpredictable or
nondeterministic. Each outcome of a random variable or each simple event defined in
a sample space, correspond to a numerical value of the random variable. A random
variable X can be viewed as a function that associate a real number with each and
every elementary event in a sample space Ω of an experiment. X is thus a real-value
function defined on a sample space.

Probability mass function (pmf)

A random variable X can be statistically described by its probability function which is
a mathematical function. X can be discrete or continuos random variable. A discrete
random variable takes discrete values usually from the posive integer set (e.g. the
number rainy days in a given month). The probability functio of a discrete random
variable X is known as the probabily mass function (pmf) which is defined as
pX (x) = Pr [X = x]. The pmf of X gives the point probabilities of the values taken X .
The probability axioms mentioned before also apply here:

0 ≤ pX (x) ≤ 1, for all possible x

pX (x) = 0, for all unrealizable x∑
pX (x) = 1, which is assumed over all possible x

So if one is certain that X = x = c, Pr [X = c] = 1. For n mutually exclusive events
x1, x2, · · · , xn, pX (x1 + x2 + · · ·+ xn) = pX (x1) + px (x2) + · · ·+ pX (xn).



pmf example

Flood occurrence
Consider the number of floods per year for a period of 34 years in the Magra River at
Calamazza, located between Pisa and Genoa. A flood occurs when mean daily
streamflows overcome a threshold equal to 300 m3/s (see the table). The pmf is

shown in the figure.

Note that in the figure,

pX (x) =
Number of occurrences
Total of occurrences=34

.



Cumulative distribution function (cdf) and cdf example

Cumulative distribution function
For a discrete or continuous random variable, the cumulative distribution function, cdf,
is the probability of nonexceedance of x and is denoted by FX (x). The cdf is
sometimes known as the distribution function. FX (x) = Pr [X ≤ x] so FX (x) is
monotonic function that is bounded by 0 and 1, so 0 ≤ FX (x) ≤ 1, for all possible x .
In the case of a discrete variable:

FX (x) =
∑
Xk≤x

pX (xk )

where xk represent all possible values of X less than x .

Flood occurrence
Consider the example of the flood occurences per year given before. The pmf is shown
in the figure.



Probability density function (pdf) and cumulative distribution function (cdf)

Probability density function (pdf)

A random variable X can take any value x depending on the physical phonomena or
quantity described and the accuracy of the measuring device (e.g. flow gauge). The
probability llaw that describe the behaviour of a continuos random variable X is given
by the probability density function, pdf. The pdf is denoted as fX (x) and is a
nonnegative and continuos mathematical function over a range of values that X can
possibly take. fX (x) does not represent a probability because it is not dimensionless
function. The probability that X fall between x1 and x2 is given by:

Pr [x1 ≤ X ≤ x2] =

∫ x2

x1

fX (x)dx ≤ 1.

When x1 and x2 get closer, the probability above tend to zero which means that the
probability that X = c (take an specific value) is null. Some properties of a pdf are:∫ ∞

−∞
fX (x)dx = 1

Pr [X > x] =

∫ ∞

x
fX (x)dx = 1− Pr [X ≤ x]



Probability density function (pdf) and cumulative distribution function (cdf)

Cumulative distribution function (cdf)

For a continuos random variable X , the cumulative distribution function, defined as
the probability of nonexceedance within the range 0 to 1, is calculated as:

FX (x) = Pr [X ≤ x] =

∫ x

−∞
fX (x)dx

it follows that:
dFX (x)

dx
= fX (x)



Probability density function (pdf) and cumulative distribution function (cdf)

Evaporation
Suppose that the pdf of the evaporation V for any day of the year is defined as:

fV (v) =

{
0.125, if 0.5 ≤ v ≤ 8.5 mm/day
0 = otherwise

To prove

that this is a pdf, one can estimate the following:∫ 8.5

0.5
0.125dv = 0.125v

∣∣∣8.5
0.5

= 0.125(8.5− 0.5) = 1

If one want to know the probability that 4 ≤ v ≤ 6 mm/day, one estimate:

Pr [4 ≤ v ≤ 6] =

∫ 6

4
0.125dv = 0.125v

∣∣∣6
4
= 0.125(6− 4) = 0.25

From the pdf, one can know the cdf as:

FV (v) = Pr [V ≤ v ] =

∫ v

−∞
fV (v) =

∫ v

0.5
0.125dv = 0.125v − 0.0625

Accoring to this Pr [V ≤ 5.5] = 0.125(5.5)− 0.0625 = 0.625 or the
Pr(V > 8, 2] = 1− (0.125(8.2)− 0.0625) = 0.0375.



Distribution of mixed variables

Distribution of mixed variables
In hydrology is common to find random variables whose probability distribution is
combined of both discrete (mass function) for one interval, and continuos (density
function) for other interval. For instance, the distribution of an intermittent
phenomena in hydrology, such as daily precipitation in an specific point where no
precipitation fall for some days (X = 0), but when rain falls the value of X > 0 (see
figure).

This case is common whenever X can be equal to zero or other boundaries besides all
other continuous positive values. The probabilities can be estimated as

Pr [X ≤ x] = Pr [X = 0] +

∫ x

0
fX (x)dx

However is not common practice to analyses hydrological random variables as mixed
variables. Instead, sample spaces are designed to analyse discrete or continuous
random variables.
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