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Expected value
The measures or descriptors of a random variable determine important features of
their behaviour and thus describe the pmfs and pdfs. The descriptors are defined upon
the pmfs o pdfs and are known as the statistics of the random variable.

Expected value

If X is a discrete random variable and g(x) is a function of the random variable, the
expected value of g(x) is:

E [g(x)] =
∑

g(xi )pX (xi )

If X is continuos, expected value is:

E [g(x)] =

∫ ∞

−∞
g(x)fX (x)

These equations indicate that the expected value or average of a random variable X is
computed by weighting the random variable function g(X ) with the pmf or the pdf.
Some of the properties of the expected value operator, E , are:

E(a) = a, when a is constant

E [ag(x)] = aE [g(x)] , when a is constant

E [ag1(x) + bg2(x)] = aE [g1(x)] + bE [g2(x)] , if a y b are constants

E [g1(x)] ≤ E [g2(x)] , if g1(x) ≥ g2(x)



Moments

Moments
The moments are a family of averages or expected values of a random variable used
to describe its behaviour. It is common to characterize a pmf or a pdf using its main
moments. If µ∗

r represents the moment of order r around the point a, this is defined
for a discrete variable as:

µ∗
r = E [(X − a)r ] =

∑
todo xi

(xi − a)rpX (xi )

for a continuous variable:

µ∗
r = E [(X − a)r ] =

∫ ∞

−∞
(x − a)r fX (x)dx

where r is an positive number. The most known moments to describe pmfs or pdfs
are the mean (µX ), the variance (sX = σ2

X ) and the asymmetry γ.

Mean, µX

The mean is the first moment (r = 1) with respect to the origin (a = 0). It is measure
that describe the central tendecy of the random variable. The mean has the same
units that X . This is defined as: Discrete random variable X

µX = E [X ] =
∑

todo xi

xipX (xi )

Continuous random variable X

µX = E [X ] =

∫ ∞

−∞
xfX (x)dx



Moments

Variance, σ2
X

The variance is the second moment (r = 2) with respect to the a = µX . The variance
describes the variability of a random variable X around their expected value µX .

Discrete random variable X

σ2
X = E

[
(X − µX )

2
]

=
n∑

i=1

(xi − µX )
2pX (xi )

Continuous random variable X

σ2
X = E

[
(X − µX )

2
]

=

∫ ∞

−∞
(x − µX )

2fX (x)dx

The larger σ2
X , the larger the dispersion of X aroung µX . According to the properties

of E discussed above, one can demostrate that:

σ2
X = E

[
(X − µX )

2
]
= E [X 2]− (E [X ])2

The standard deviation, σX , is defined as:

σX =
√

σ2
X

where σX has the same units of X and thus facilitate the understanding of the
dispersion of X around µX . The relative measure of dispersion with respect to µX is
the coefficient of variation defined as:

VX =
σX

µX



Moments

Asymmetry, γ

The asymmetry, γ, is the third moment (r = 3) around the mean (a = µX ). The
definition is:

Discrete random variable X

γ = E
[
(X − µX )

3
]

=
n∑

i=1

(xi − µX )
3pX (xi )

Continuous random variable X

γ = E
[
(X − µX )

3
]

=

∫ ∞

−∞
(x − µX )

3fX (x)dx

γ is a measure of the pmf or pdf symmetry. Based on these equations, the
nondimensional asymmetry coefficient is defined as:

γ1 =
E
[
(X − µX )

3
]√

[E [(X − µX )2]]
3

=
E
[
X 3

]
− 3E

[
X 2

]
µX + 2µ3

X(
E [X 2]− µ2

X

) 3
2

As you can see in the equation above, the numerator is the central moment of third
order (r = 3) and the denominator is σX raised to the power of 3. Note that γ1 have
the same sign that γ. For symetrical distribution, γ ≈ 0.



Moments

Quantiles, q

The q-esimo quantile, q, of a random variable X , is defined as the smallest number ξ
that satisfy the inequality FX (ξ) ≥ q. For a continuos variable, ξ sastisfy FX (ξ) = q
and the quantile is the value of X that is exceeded with a probability of (1− q).
Convesely, the quantile can be written as q = x(F ) or q = x[FX (x)]. Accordingly, the
mediana is the 0.5 quantile, written as ξ0.5. A quantile q can be defined as
ξq = F−1

X (q). The most common q are the quartiles ξ0.25, ξ0.5 and ξ0.75.

Daily evaporation
Suppose that the pdf of the evaporation V for any day of the year is defined as:

fV (v) =

{
0.125, if 0.5 ≤ v ≤ 8.5 mm/day
0 = otherwise

Estimate the main moments.
Mean µV

µV = E [V ] =

∫ ∞

−∞
vfV (v)dv

=

∫ 8.5

0.5
0.125vdv

= 0.0625v2
∣∣∣8.5
0.5

= 4.5mm/day

Variance σ2
V

σV = E
[
(v − µV )

2
]

=

∫ ∞

−∞
(v − µV )

2fV (v)dv

= 0.125

∫ 8.5

0.5
(v − 4.5)2dv

=
0.125

3

[
(v − 4.5)3

] ∣∣∣8.5
0.5

= 5.33mm2/day2



Moments

Daily evaporation
Standard deviation σV

σV =
√

σ2
V =

√
5.33 = 2.31mm/day

Quantile ξ
From the

FV (v) = 0.125v − 0.0625 and

regarding that ξq = F−1
V (q), one

has that ξq = 8(q + 0.0625). So
ξ0.1 = 1.3 and ξ0.5 = 4.5 (the
mediana). The interquartile

range is
qr = ξ0.75−ξ0.25 = 6.5−2.5 = 4.

Assymetry γ

γ = E
[
(v − µV )

3
]
=

∫ ∞

−∞
(v − µV )

3fV (v)dv

= 0.125

∫ 8.5

0.5
(v − 4.5)3dv

=
0.125

4

[
(v − 4.5)4

] ∣∣∣8.5
0.5

= 0

This indicate that fV (v) is simetric with respecto
to µV .



Generating functions
A generating function is a convenient way to represent a sequence such as the
sequence of moments. The function, usually of a quantity t, is expanded as power
series to give the values of the moments as the coefficients.

Moment-generating function

Moments define a pmf or a pdf. For some distributions, it is possible to define a
moment-generating function, mgf that exist for a domain −ε < t < ε. The mgf is
defined as:

MX (t) = E [etX ]

Mathematically, etX can be expanded in powers of t about of zero as a Maclauring’s
series. Replacing in the equation above and getting the expected values for the
expansion coefficients:

MX (t) = E [etX ] = E

[
1 + Xt +

1

2!
(Xt)2 + · · ·

]
= 1 + µ1t +

1

2!
µ2t

2 + · · ·

one can get the moments of the distribution. Alternatively for:
discrete x

MX (t) =
∑

etxj px (xj ), for all possible xj

continuous x

MX (t) =

∫ ∞

−∞
etx fx (x)dx

The moment of order m can be obtained by deriving MX (t) with respect to t and
evaluating the derivative for t = 0, so:

dmMX (t = 0)

dtm
=

∫ ∞

−∞
xmfX (x)dx = E [Xm]



Generating functions

Moment-generating function

For instance, the first moment (m = 1) is obtained as:

dMX (t = 0)

dt
=

[∫ ∞

−∞
xetx fX (x)dx

]
t=0

=

∫ ∞

−∞
xfX (x)dx = E [X ]

The second moment, (m = 2), with respect to zero is:

d2MX (t = 0)

dt2
=

∫ ∞

−∞
x2fX (x)dx = E [X 2]

Time between rainfall events
The time (e.g days, hours) between rainfall events is a continuous variable X
exponentially distributed as fX (x) = λe−λx for 0 < X < ∞. The moment-generating
function is:

MX (t) =

∫ ∞

0
etxλe−λxdx =

λ

t − λ
ex(t−λ)

∣∣∣∞
0

=
λ

λ− t

As t < λ, the function above evaluated in ∞ is zero. The equation above gives the
moment-generating function. The firs moment (m = 1) is estimated as:

dMX (t = 0)

dt
= E [X ] = µX =

λ

(λ− t)2

∣∣∣
t=0

=
1

λ



Generating functions

Time between rainfall events
The second moment is:

d2MX (t = 0)

dt2
= E [X 2] =

2λ

(λ− t)3

∣∣∣
t=0

=
2

λ2

Following the definition of the variance σ2
X :

σ2
X = E [X 2]− (E [X ])2 =

2

λ2
−

1

λ2
=

1

λ2

Factorial moment-generating function

For some discrete random variable, it is convenient to apply a factorial
moment-generating function defined as E [tX ]. For this function, the condition of
interest is t = 1 instead of t = 0 (used in the moment-generating function). If E [tX ]
exist, the mth derivative for t = 1 is the mth-order factorial moment of X .



Number of rainy days

Number of rainy days
The number of rainy days in a year is a discrete random variable X and it is described

by a Poisson distribution pX (x) =
νx e−ν

x!
, where x = 0, 1, 2, · · · , ν > 0. As X has a

factorial mgf:

E [tX ] =
∞∑
x=0

txνxe−ν

x!
= e−ν

∞∑
x=0

(tν)x

x!
= e−νetν = eν(t−1)

The first and second derivative of E [tX ] with respect to t are:
first derivative

dE [tX ]

dt
= νeν(t−1)

∣∣∣
t=1

= ν

second derivative

d2E [tX ]

dt2
= ν2eν(t−1)

∣∣∣
t=1

= ν2

Similarly, The first and second derivative of E [tX ] with respect to t are using the E
operator:

first derivative

dE [tX ]

dt
= E

[
Xt(X−1)

]
t=1

= E [X ]

second derivative

d2E [tX ]

dt2
= E

[
X (X − 1)t(X−2)

]
t=1

= E [X 2]−E [X ]

Equaling the above equations:

E [X ] = ν E [X 2]− E [X ] = ν2

Accordingly:
σ2
X = E [X 2]− (E [X ])2 = ν2 + ν − ν2 = ν



Characteristic functions

Characteristic functions
A characteristic function of X is an alternative function useful when the mgf does not
provide estimates of moments. It is defined as:

ϕX (t) = E [e itx ] = MX (it)

discrete x

MX (it) =
∑

e itxj px (xj ), for all possible xj

continuous x

MX (it) =

∫ ∞

−∞
e itx fx (x)dx

donde i =
√
−1. For instance for a continuous X , the characteristic function is similar

to the Fourier transform, so the inverse is:

fX (x) =
1

2π

∫ ∞

−∞
e itxϕX (t)dt

This equation means that if two random variable X and Y have the same
characteristic function, they are identically distributed.
The characteristic function can be used to calculate the moments as:

µr = E [X r ] =
1

ik
dkϕX (t)

dtk

∣∣∣
t=0

Expanding the caracteristic function ϕX (t) in Taylor’s series around t = 0, we have:

e itX = 1 + itX +
1

2
(itX )2 +

1

6
(itX )3 + · · ·



Characteristic functions

Characteristic functions
Taking expectation in both sides:

ϕX (t) = E [e itX ] = 1 + itE [X ] +
1

2
(it)2E [X 2] +

1

6
(it)3E [X 3] + · · ·

= 1 + itµ+
1

2
(it)2µ2 +

1

6
(it)3µ3 + · · ·

In a compact manner:

ϕX (t) =
∞∑
r=0

(it)r

r !
µr

This equation indicate that if the moments exist and it converges, the pdf of X is
completely defined. This is de case of most pdfs in practice. If there are two
independent random variables X and Y , the characteristic function is:

ϕX+Y (t) = ϕX (t)ϕY (t)

It follows that if we have the sum of M indentically distributed random variables
Z =

∑M
i=1 Xi , the characteristic function of Z is:

ϕZ (t) = [ϕX (t)]
M

For a variable Y = a+ bX , the caracteristic function is:

ϕY (t) = e itbϕX (at)



Characteristic functions

Characteristic functions
Taking logarithms for equation ϕZ (t) = [ϕX (t)]

M :

KZ (t) = MKX (t)

where the functions KZ (t) = lnϕZ (t) and KX (t) = lnϕX (t) are the cumulant
functions of Z and X , respectively. The series expansion for the cumulant function is:

KZ (t) =
∞∑
n=1

(it)n

n
κn

where the cummulants, κn = 1
in

dnKZ (t)
dsn

. The cumulants are related to the pdf
moments and viseversa so:

κ1 = µ1

κ2 = µ2 − µ2
1 = σ2

κ3 = µ3 − 3µ2µ1 + 3µ3
1

κ4 = µ4 − 4µ3µ1 − 3µ2
2 + 12µ2µ

2
1 − 6µ4

1



Estimation of parameters

Statistical inference serves to get an estimate of the experiment parameters based on
a random sample from the population. In statistical inference is assumed that the
distribution of the population is known. The estimator is thus a method to obtain a
parameter value based on the sample and can be bias. This methods of parameter
estimation are known as point estimation. In summary, the problem of statistical
inference is to find the parameters of a probability distribution (or parametric
distribution) that fit the best the sample data. The most known methods (estimators)
to perform that are treated here :the method of moments, Method of probability
weighted and L-moments and Maximum Likelihood.

The method of moments
The method of moments is the most know analytical estimator. Given a pdf of the
population and applying the concept of moments, one can get analytical expressions
for the moments (.e.g µX and σ2

X ) as function of the pdf parameters. For instance, in
the case of a pdf with two parameters (α1 y α2), the concept of moments is used to
obtain two equations, one for µX and the other for σ2

X . An estimate of µ̂X and σ̂2
X is

calculated based on the sample data. This two estimates are replaced in the two
equations to get the pdf parameters. One of the problem with the method is that the
parameter estimates may be biased, that is, if for m different samples of size n,
different pdf parameters are estimated, the average of the parameter values does not
converge to the real value of the parameter. Also, the estimator can be ineficient and
an efficient estimator has the smallest variance among all posible estimator.



Estimation of parameters

Method of probability weighted and L-moments

For a random variable X with cdf FX (x), the probabilistic weighted moments (pwms)
are defined as:

Mijk = E
[
X i{FX (x)}j{1− FX (x)}k

]
=

∫ 1

0
x(F )iF j (1− F )kdF

where x(F ) is the quantile or inverse cdf function of X , and j and k take values as
0, 1, · · · ,m, where m is the number of samples. For j = k = 0 this equation provides
the moment of order i about zero. In the application of pwms, it is often convenient
to i = 1, and j = 0 or k = 0.

Extreme storms
Extreme values such as flood discharges, precipitation over threshold, wind waves, etc,
usually follow a extreme value distribution. If X is a extreme random variable, the cdf
is given by:

FX (x) = exp

[
− exp

(
−
x − b

a

)]
where a and b are the cdf parameters. The quantile function X (F ) is:

ln y = − exp

(
−
x − b

a

)
ln(− ln y) = −

x − b

a

x = b − a ln(− ln y)

where y ≡ FX (x).



Estimation of parameters

Extreme storms
Applying the expression for the pwms when i = 1 and k = 0, one has:

Mijk = Mj =

∫ 1

0
(b − a ln(− ln y)) y jdy = b

∫ 1

0
y jdy − a

∫ 1

0
y j ln(− ln y)dy

The solution of the first integral is easy b
∫ 1
0 y jdy = b

1+j
. The solution of the second

integral is complicated, this is a
∫ 1
0 y j ln(− ln y)dy = −a[ln(1+j)+ne ]

1+j
. ne ≈ 0.57721 is

the Euler’s number. The solution of the integral is:

Mj =
b

1 + j
+

a [ln(1 + j) + ne ]

1 + j

For pwms for j = 0 and j = 1 are:
j = 0

M0 = b + ane

j = 1

M1 =
b + a(ln 2 + ne)

2
Expressing the equations above in terms of a and b:

a =
2M1 −M0

ln 2
b = M0 − ane

The problem is how to estimate M0 and M1 to calculate a and b.



Estimation of parameters
Extreme storms
Suppose that there is a sample of X that take values (x0, x1, · · · , xn) where n is
sample size. Experimentally, pwms are calculated as

Mj =
1

n

∑
i

pji xi

where pi is the probability of xi . Accordingly:
j = 0

M0 = µ̂X =
1

n

∑
i

xi (mean)

j = 1

M1 =
1

n

∑
i

pixi (weighted mean)

Suppose that we have the following table with the fourteen maximum precipitation
depth (xi (mm)) for a 3-h storm duration for a period of time. The table shows the
ordered precipitation and the probabilities of each value pi .

Note that the values of pi correspond to
plotting positions for the ordered values
xi . According to the values in the table,
M0 = 83.7 mm and M1 = 54.6 mm. The
estimated values of â and b̂ are:

â =
2M1 −M0

ln 2
=

2x54.6− 83.7

ln 2
= 36.8 mm

b̂ = M0−ane = 83.7−36.8x0.5772 = 62.4 mm



Estimation of parameters

Extreme storms
The following figure shows the probability of exceedence (Pr [X > x] = 1− FX (x)) for
the observed data, the theoretical extreme value distribution whose coefficients (a y b)
were estimated using the methods of moments and the pwms.



Estimation of parameters

Maximum likelihood method
For a given random variable X , a sample of size n is taken from the space space, and
the pdf is fX (x). The likelihood function of θ, where θ is vector of m parameters, is
represented as:

L(θ) =
n∏

i=1

fX (xi |θ)

The objective is to find the vector θ that maximize L(θ) for a given X sample. It is
thus necessary to obtain the m partial derivative of L(θ) with respect to each θ
parameter. Derivatives are equated to zero and solved to find the maximum likelihood
(ML) estimators (θ̂) of θ.

Flood exeedance
Suppose that X is a discrete random variable that determine the exceedance of a
discharge threshold. Accordingly, X is equal to 1 where X > xthreshold (flood
occurrence) and equal to zero where X ≤ xthreshold (no occurrence of flood,
complementary event). After the analysis of gauge streamflow data, the probability of
X = 1 is equal to p and the probability of X = 0 is (1− p). If the pmf of X is a
Bernoulli distribution:

PX (xj ) = Pr [X = xj ] = pxj (1− p)1−xj , for xj = 0, 1

Note that p is the parameter of the pmf . The likelihood function for n trials or
outcomes is:

L(p) =
n∏

j=1

pxj (1− p)1−xj , for xj = 0, 1



Estimation of parameters

Flood exeedance
A fundamental identity indicate that ln

(∏n
i=1 ai

)
=

∑n
i=1 ln ai . Following this:

ln L(p) = ln

 n∏
j=1

pxj (1− p)1−xj

 =
n∑

j=1

ln
(
pxj (1− p)1−xj

)
Then:

ln L(p) = ln p
n∑

j=1

xj + ln(1− p)
n∑

j=1

(1− xj )

The derivative is:

d (L(p))

dp
=

1

p

n∑
j=1

xj −
1

1− p

n∑
j=1

(1− xj ) =

∑n
j=1 xj

p
−

n −
∑n

j=1 xj

1− p

Equaling to zero and solving for p:

p̂ =

∑n
j=1 xj

n

where p̂ is and estimator of p.

The maximum likelihood method is the most implemented method. However, large
samples are required to prevent the estimator becomes unbiased. This estimator does
not have a low variance in comparison with others. Sometimes the estimators can be
obtained analytically so numerical methods are needed.



Multiple random variables

▶ So far, only single random variables have been considered belonging to a
population.

▶ To describe individual random variables, univariate distributions have been
considered.

▶ In these section, experiments where two or more random variables occur
simultaneously are studied.

▶ Variables are studied jointly and their distribution are of the multivariate type.

▶ For multiple variables, probabilities laws are described by joint probability mass or
density functions.

▶ An example of a continuous bivariate distribution is given by the mean hourly
wind speed and wind direction recorded by a weather station. Note that both
random variables occurred simultaneously.



Joint probability distribution of discrete variables

Joint probability mass function

Given two discrete random variables X y Y , the joint (bivariate) pmf is given by the
intersection probability pX ,Y (x , y) = Pr [(X = x) ∩ (Y = y)]. According to the
proability axioms,

∑
all xi

∑
all yj

pX ,Y (xi , yj ) = 1. The joint cdf is given by

FX ,Y (x , y) = Pr [(X ≤ x) ∩ (Y ≤ y)] =
∑

xi≤x

∑
yj≤y pX ,Y (xi , yj ). For n randon

variables X , the joint pmf is given by:

pX1,X2,··· ,Xn = Pr [(X1 = x1) ∩ (X2 = x2) ∩ · · · ∩ (Xn = xn)]

and the joint cdf is given by:

FX1,X2,··· ,Xn = Pr [(X1 ≤ x1) ∩ (X2 ≤ x2) ∩ · · · ∩ (Xn ≤ xn)]

=
∑

x1i ≤x1

∑
x2j ≤x1

· · ·
∑

xnk ≤xn

pX1,X2,··· ,Xn (x1i , x2j , · · · , xnk )

Wind records
In an urban area, two different weather stations, whose precisions are different,
measure wind speed. Engineers are interested to measure the number of days per year
that wind speed, in each station, surpases an speed threshold. As these winds are
liable to cause infrastructure damages, for design purposes, it is needed to estimate
the joint probability of the number of days per year where wind speed is > 60 km/h
estimated using the two instruments. The following table shows the pmf for the
variables measured at the accurate station X and the less accurate station Y .



Joint probability distribution of discrete variables

Wind records

Note that this table also show the marginal pmf of X and Y . Suppose that one want
to judge the accuracy of Y , the probability that (X = Y ) (event A) can be calculated
as:

Pr [A] =
∑
all xi

pX ,Y (xi , yi ) = pX ,Y (0, 0) + pX ,Y (1, 1) + pX ,Y (2, 2) + pX ,Y (3, 3) = 0.813



Joint probability distribution of discrete variables

Conditional probability mass function

Given two discrete random variables X and Y whose joint pmf is given by pX ,Y (x , y),
the conditional probability mass function given that a value of Y equal to yj is:

pX |Y (x |yj ) = Pr [X = x |Y = yj ] =
Pr [(X = x) ∩ (Y = yj )]

Pr [Y = yj ]

=
pX ,Y (x , yj )∑

all xi
pX ,Y (xi , yj )

=
pX ,Y (x , yj )

pY (yj )
, for all j

Accorging to the probability axioms, 0 ≤ pX ,Y (x |yj ) ≤ 1, for all j and∑
all xi

pX |Y (xi , yj ) = 1, for all j . Other conditional probability distribution are
derived, for instance, when one wants to know the probability distribution of X when
Y ≥ y . So:

pX |Y≥y ≡ Pr [X = x |Y ≥ y ] =

∑
yj≥y pX ,Y (x , yj )∑

yj≥y pY (yj )

Engineers are aware that almost all observed events are conditioned by the occurrence
of other events. This is why, in practice, conditional probabilities are more easily
obtained than joint pmfs. Accordingly, the joint pmf can be obtained using the
conditional pmf and the corresponding marginal pmf as follows:

pX ,Y (x , y) = pX |Y (x |y)pY (y) = pY |X (y |x)pX (x)



Joint probability distribution of discrete variables

Wind records
According to the table above, if Y = 1, the joint probabilities pX ,Y (x , 1) are given by
0.0600, 0.3580, 0.0250 and 0.0015 for x = 0, 1, 2 and 3. The sum of these
probabilities, pY (Y = 1) = 0.4445. The conditional pmf, pX |Y (x |1) is given by 0.1350,
0.8054, 0.0562 and 0.0034, for x = 0, 1, 2 and 3. Note that the sum of pX |Y (x |1) is 1.

Marginal probability mass function

For multiples random variables, if all variables are disregarded apart from the single
variable Xi , the marginal pmf of Xi can be obtained from the joint pmf. For instance,
for a bivariate joint pmf, the marginal pmf of X (or for Y ) is:

pX (x) ≡ Pr [X = x] =
∑
all yj

Pr [X = x |Y = yj ]Pr [Y = yj ] =
∑
all yj

pX ,Y (x , yj )

The cdf can be obtained from this equation as follow:

FX (x) ≡ Pr [X ≤ x] =
∑
xi≤x

∑
all yj

pX ,Y (xi , yj )



Joint probability distribution of discrete variables

Wind records
From the table of wind records, suppose that the engineer want to know the
Pr [X = 0], so applying marginal pmf equation
pX (0) = Pr [X = 0] =

∑3
y=0 pX ,Y (0, y) = 0.2910+0.0600+0.0000+0.0000 = 0.3510.

The Pr [X > 0] can be obtained using the cdf and is equal to 0.6490. The following
figures show the marginal pmf of X and Y .

Independent discrete random variable

If the events X = x and Y = y are statistically independent (or X and Y are
statistically independent), the contidional pmf is:

pX |Y (x |y) = pX (x) and pY |X (y |x) = pY (y)

and the joint pmf is:
pX ,Y (x , y) = pX (x)pY (y)



Joint probability distribution of continuous variables

Joint pdf and cdf for continuos X and Y variables

If two continuos random variables X and Y ocurr simultaneously or are related
somehow, the joint probability distribution is described by the joint probability density
function (pdf), fX ,Y (x , y). The probability over a region of interest {(x1, x2), (y1, y2)},
where x1 < x2 and y1 < y2, is defined as:

Pr [(x1 ≤ X ≤ x2) ∩ (y1 ≤ Y ≤ y2)] =

∫ x2

x1

∫ y2

y1

fX ,Y (x , y)dydx

As shown in the figure, this integral rep-
resent the volume below the surface repre-
sented by the joint pdf over the region of
interest. According to the probability ax-
ioms, the fX ,Y (x , y) has the following prop-
erties:

fX ,Y (x , y) ≥ 0∫ ∞

−∞

∫ ∞

−∞
fX ,Y (x , y)dydx = 1

The joint cumulative distribution function (cdf), FX ,Y (x , y), is defined as:

FX ,Y (x , y) ≡ Pr [(−∞ ≤ X ≤ x) ∩ (∞ ≤ Y ≤ y)] =

∫ x

−∞

∫ y

−∞
fX ,Y (x , y)dydx



Joint probability distribution of continuous variables

Joint pdf and cdf for continuos X and Y variables

These concepts can be applied to n random variables X defined on the same
probability space. So (X1,X2, · · · ,Xn) is an n-dimensional continuous random
variable if fX1,X2,··· ,Xn (x1, x2, · · · , xn) ≥ 0. Accordingly:

FX1,X2,··· ,Xn (x1, x2, · · · , xn)
≡ Pr [(−∞ ≤ X1 ≤ x1) ∩ (∞ ≤ X2 ≤ x2) ∩ · · · ∩ (∞ ≤ Xn ≤ xn)]

=

∫ x1

−∞

∫ x2

−∞
· · ·

∫ xn

−∞
fX1,X2,··· ,Xn (x1, x2, · · · , xn)dx1dx2 · · · dxn

where (x1, x2, · · · , xn) is a n-tuple of points in the sample space. Recalling from the
univariate case, the pdf and the cdf are related for the bivariate case as:

fX ,Y (x , y) =
∂2

∂x∂y
FX ,Y (x , y)

For n random variables:

fX1,X2,··· ,Xn (x1, x2, · · · , xn) =
∂n

∂x1∂x2 · · · ∂xn
FX1,X2,··· ,Xn (x1, x2, · · · , xn)



Joint probability distribution of continuous variables

Storm intensity and duration
An storm occurring in place on earth is characterized its intensity and its duration,
where the intensity is the average amount of rain fell. Suppose that intensity and
duration are two continuous random variables, Y and X , respectively. It is known that
the cdf of X and Y are represented by:

FX (x) = 1− e−ax , x ≥ 0, a > 0; FY (y) = 1− e−by , y ≥ 0, b > 0;

where a and b are parameters of the cdfs. Accordingly, it is assumed that the joint cdf
is given by the exponential bivariate distribution:

FX ,Y (x , y) = 1− e−ax − e−by + e−ax−by−cxy

where c is a parameter of the joint cdf that describes the joint variability (or
correlation) of X and Y . According to the marginal cdfs, a and b are > 0, so that,
one might be interested to known the possible values of c. To search for the lower
bound of c, it is known by definition that FX ,Y (x , y) ≤ FX (x), because the joint
Pr [X ≤ x ,Y ≤ y ] can not exceed Pr [X ≤ x] independently of the value taken by Y .
The same apply for Y . Accordingly:

FX ,Y (x , y) = 1− e−ax − e−by + e−ax−by−cxy ≤ FX (x) = 1− e−ax

resolving:

−e−by − e−ax−by−cxy ≤ 0 e−ax−by−cxy ≤ e−by − x(a+ cy) ≤ 0

Regarding that X and Y are non negative variables, the inequality −x(a+ cy) ≤ 0
holds if and only if (a+ cy) ≥ 0.



Joint probability distribution of continuous variables

Storm intensity and duration
To determine the upper bound of c we need to get the joint pdf. So that, first we get
the partial derivative with respect to x and then with respect to y :

∂F

∂x
=

∂
(
1− e−ax − e−by + e−ax−by−cxy

)
∂x

= ae−ax − (a+ cy)e−ax−by−cxy

fX ,Y (x , y) =
∂2F

∂x∂y
=

∂
(
ae−ax − (a+ cy)e−ax−by−cxy

)
∂y

= [(a+ cy)(b + cx)− c] e−ax−by−cxy

Accordingly, the for x = y = 0, fX ,Y (0, 0) = ab − c. Since the joint pdf is a
non-negative function, the inequality ab− c ≥ 0 must hold, so the upper bound of c is
c ≤ ab. Summing up, the bivariate exponential distribution is defined for 0 ≤ c ≤ ab.



Joint probability distribution of continuous variables

Conditional probability density function

The conditional density function of Y given X is written as:

fY |X (y |x) =
fX ,Y (x , y)

fX (x)

From where,
fX ,Y (x , y) = fY |X (y |x)fX (x) = fX |Y (x |y)fY (y)

Storm intensity and duration
From the example above, it is known that a > 0, b > 0 and 0 ≤ c ≤ 1 are three
parameters estimated based on rainfall data. For weather station, the following values
were estimated: a = 0.05 h−1, b = 1.2 h/mm and c = 0.06 mm−1. Engineers are
planning to design a drainage system, so they need to estimate the probability that an
storm lasting X = 6 hours will exceed an average intensity of Y = 2 mm/h. The
conditional pdf of the storm intensity for a given duration is:

fY |X (y |x) =
fX ,Y (x,y)

fX (x)
=

[(a+ cy)(b + cx)− c] e−ax−by−cxy

ae−ax

= a−1 [(a+ cy)(b + cx)− c] e−y(b+cx)



Joint probability distribution of continuous variables

Storm intensity and duration
The conditional cdf is (making y ≡ u):

FY |X (y |x) =
∫ y

0
a−1 [(a+ cu)(b + cx)− c] e−u(b+cx)du

= a−1(b + cx)

∫ y

0
(a+ cu)e−u(b+cx)du − a−1c

∫ y

0
e−u(b+cx)du

= 1−
a+ cy

a
e−y(b+cx)

Evaluating the following:

Pr [Y > 2|X = 6] = 1− FY |X (2|6) = 1− 1 +
0.05 + 0.06x2

0.05
e−2(1.2+0.06x6) = 0.15



Joint probability distribution of continuous variables

Independent continuous random variable

If the events X = x and Y = y are stochastically independent, then fX |Y (x , y) = fX (x)
and fY |X (y , x) = fY (y), therefore fX ,Y (x , y) = fX (x)fY (y). Note that the assumption
of independence simplifies the application of probability to engineering problems.

Storm intensity and duration
If the joint variability of storm duration X and storm intensity Y , is neglected, the
joint pdf is given by:

fX ,Y (x , y) = fX (x)fY (y) = ae−axbe−by = ab e−ax−by

The same expression is valid for c = 0.

Marginal probability density function

The extension of the total probability theorem gives:

fX (x) =

∫ ∞

−∞
fX |Y (x |y)fY (y)dy =

∫ ∞

−∞
fX ,Y (x , y)dy

fY (y) =

∫ ∞

−∞
fY |X (y |x)fX (x)dx =

∫ ∞

−∞
fX ,Y (x , y)dx



Joint probability distribution of continuous variables

Storm intensity and duration
The joint pdf for the storm duration X and the storm intensity Y is
fX ,Y (x , y) = [(a+ cy)(b + cx)− c] e−ax−by−cxy . From the definition of marginal
probability density function:

fX (x) =

∫ ∞

0
fX ,Y (x , y)dy =

∫ ∞

0
[(a+ cy)(b + cx)− c] e−ax−by−cxydy = a e−ax

fY (y) =

∫ ∞

0
fX ,Y (x , y)dx =

∫ ∞

0
[(a+ cy)(b + cx)− c] e−ax−by−cxydx = b e−by



Properties of multiple variables

Covariance and correlation
The expectation operator (E) introduced in below for a single variable can be used on
two or more random variables. For instance, for the linear combination of two random
variables X1 and X2, E [aX1 + bX2] = aE [X1] + bE [X2], where a and b are constants.
Accordingly, the variance of aX1 + bX2 is:

Var [aX1 + bX2] = a2Var [X1] + b2Var [X2]− 2abCov [X1,X2]

where the operator Var is the variance operator and Cov is the covariance operator.
The covariance of X1 and X2 is calculated as:

Cov [X1,X2] = E [(X1 − E [X1])(X2 − E [X2])] = E [X1X2]− E [X1]E [X2]

where E [X1X2] =
∫∞
−∞

∫∞
−∞ x1x2fX1,X2

(x1, x2)dx1dx2 . If X1 and X2 are independent:

E [X1X2] =

∫ ∞

−∞

∫ ∞

−∞
x1x2fX1,X2

(x1, x2)dx1dx2

=

[∫ ∞

−∞
x1fX1

(x1)dx1

] [∫ ∞

−∞
x2fX2

(x2)dx2

]
= E [X1]E [X2]

therefore Cov [X1,X2] = 0 and Var [aX1 + bX2] = a2Var [X1] + b2Var [X2].



Properties of multiple variables

Storm intensity and duration
The joint pdf of the independent random variables, storm duration X and storm
intensity Y , is fX ,Y (x , y) = fX (x)fY (y) = a e−axb e−by = ab e−ax−by , where
µX = a−1 and µY = b−1. To estimate Cov [X ,Y ], it is needed to estimated:

E [XY ] =

∫ ∞

0

∫ ∞

0
xyfX ,Y (x , y)dxdy =

∫ ∞

0

∫ ∞

0
xy ab e−ax−bydxdy =

1

ab

The Cov [X ,Y ] is:

Cov [X ,Y ] = E [XY ]− E [X ]E [Y ] =
1

ab
−

1

a

1

b
= 0

This confirm that there is no covariance between X and Y .

Coefficient of linear correlation
Note that Cov [X1,X2] is positive and large when both variables are large or small with
respect to their means.In contrast, Cov [X1,X2] can be negative and large when both
variables are equidistand (e.g. one small and the other large). Note that covariance is
a mesuare of the linear relationship between variables; no linearly related variables
yield no covariance. The linear relationship between X1 and X2 is defined as the
coefficient of linear correlation (ρ):

ρ =
Cov [X1,X2]

σX1
σX2

where −1 ≤ ρ ≤ 1.



Properties of multiple variables

Joint moment-generating function

The Joint moment-generating function for multiple random variables X1,X2, · · · ,Xk

is:

MX1,X2,··· ,Xk
(t1, t2, · · · , tk ) = E

[
e

(∑k
i=1 tiXi

)]
where the rth moment of Xi can be computed by diferentiating the joint
moment-generating function r times with respect to ti and then evaluating the
derivative for ti = 0. For two statistically independent random variables, X1 and X2,
the Joint moment-generating function is:

MX1,X2
(t1, t2) = E [et1X1+t2X2 ] = E [et1X1 ]E [et2X2 ] = MX1

(t1)MX2
(t2)

This means that if the joint mgf of two variables equal the product of individual mgfs,
the two variables are statistically independent.

Storm intensity and duration
The joint pdf of the independent random variables, storm duration X and storm
intensity Y , is fX ,Y (x , y) = ab e−ax−by , where µX = a−1 and µY = b−1. The joint
mgf of X and Y is:

MX ,Y (t1, t2) = E
[
et1X+t2Y

]
= E

[
et1X

]
E
[
et2Y

]
=

ab

(a− t1)(b − t2)



Probability distributions

Generalities

▶ From the data sample representation is possible to obtain the empirical
distribution.

▶ The probability distributions are mathematical functions that satisfy the
probability axioms.

▶ These distributions or functions are appropriate to describe analytically the
random behaviour of certain variables and are interpreted as probability models.

▶ Accordingly, the probability distributions establish the probability of occurrence of
a value taken by the random variable.

▶ A random variable can be represented by multiple distributions, however the
’́closest oné’ to the empirical distribution must be chosen.

▶ In hydrology, there are certain distributions that adjust the best to some
hydrological variables according to decades of experience.

▶ To fit a probability distribution to a random variable upon a random variable
sample is needed to adjust the distribution parameters.

▶ The more parameters the function has, the most flexible is the distribution to fit
the empirical distribution. However the more parameters, the less degrees of
freedom.

▶ Probability distributions can according to the random variable type:
▶ Discrete probability distributions: Used for discrete random variables
▶ Continuous probability distributions: Used for continuous random variables



Discrete probability distributions

The binomial distribution
This distribution is used to define the probabilities of discrete random variables. For a
sample of size n an instance of the random variable only take two values (0 or 1,
success or failure). The n observations or experiments are mutually exclusive and
collectively exhaustive, and the probability of occurrence of either value is constant.
Each observation or experiment follow a Bernoulli distribution where the probability
of success is p and the probability of failure is 1− p. The set of n observations or
experiments is known as the experiments of Bernoulli from where a random variable
X , which represents the observation with success in n observations, follows a Binomial
distribution:

pX (x) = Pr [X = x ; n, p] = B(x ; n, p) =
(n
x

)
px (1− p)n−x

where n and p are parameters of the distribution, x = 0, 1, · · · , n, 0 ≤ p ≤ 1 and(n
k

)
= n!

x!(n−x)!
; this term represents the possible combinations to obtain x success

from n. The cmf is:

FX (x) = Pr [X ≤ x] =
x∑

k=0

(n
k

)
pk (1− p)n−k

For this distribution, the mean is E [X ] = np and the variance is Var [X ] = np(1− p).



Discrete probability distributions

Flooding of a road
The probability that a road is flooded once in a give year is p = 0.1. Compute the
probability that the road will be flooded at least once during a five-year period. So the
Pr [X ≥ 1] = Pr [X = 1; 5, 0.1] + Pr [X = 2; 5, 0.1] + Pr [X = 3; 5, 0.1] + Pr [X =
4; 5, 0.1]+Pr [X = 5; 5, 0.1] = 0.3281+ 0.0729+ 0.0081+ 0.0005+ 0.00001 = 0.4095.
An alternative to estimate this probability is to determine the probability of no flooded
during the period (Pr [X < 1] = 1− Pr [X ≥ 1]). So
Pr [X ≥ 1] = 1− Pr [X = 0; 5, 0.1] = 1− 0.5905 = 0.4095. Note that in reality, the
values of p can change year to year so the application of this model can be inaccurate.

The geometric distribution

This distribution characterizes the probability of a random variable X that represents
the Bernoulli’s trials upon one get a success. So:

PX (x) = Pr [X = x ; p] = (1− p)x−1p

where p (0 < p ≤ 1) is the probability of success in the Bernoulli’s trials, and
X = 0, 1, 2, · · · , x − 1 failures before the first success. A converging geometric series∑∞

x=1(1− p)x = 1−p
p

. To optain the mean, one can derive both sides of the

geometric series with respect to p and multiply by −p, which is equivalent to
E [X ] =

∑∞
x=1 x(1− p)x−1p = 1

p
. To obtain

Var(X ) = E [X (X − 1)] = E [X 2]− E [X ] =
∑∞

x=1 x(x − 1)(1− p)x−1p =



Discrete probability distributions

The geometric distribution

To obtain Var(X ) one use the second factorial moment as
E [X (X − 1)] = E [X 2]− E [X ] =

∑∞
x=1 x(x − 1)(1− p)x−1p. Getting the second

derivative of the geometric series with respect to p and multiplying both sides by

p(1− p), one get that E [X 2]− E [X ] = 2(1−p)

p2
. Regarding this and that

Var(X ) = E [X 2]− (E [X ])2 = 2(1−p)

p2
+ E [X ]− (E [X ])2 = 2(1−p)

p2
+ 1

p
− 1

p2
= 1−p

p2



Continuous probability distributions
Continuous probability distributions are applicable when the random variable is
continuous; take any value in its real domain, e.g. river flow, air temperature.

Uniform distribution
It is the simplest distribution, and as it is indicated by its name, the pdf is constant
over a defined interval a ≤ x ≤ b. The pdf is:

fX (x) =
1

b − a
, for a ≤ x ≤

= 0, otherwise

This distribution is also knows as the rectangular distribution. Note that all values
between a and b are equally probable and the area under the pdf is equal to 1. The
probability that X fall in (c, d) is Pr [c < X < d ] = d−c

b−a
. The unit uniform

distribution is obtained when a = 0 and b = 1 ans it is commonly used to generate
random variables in simulations.



Continuous probability distributions

Uniform distribution

▶ Mean

E [X ] =

∫ b

a

x

b − a
dx =

1

b − a

[
x2

2

]b
a

=
b + a

2

▶ Variance

Var [X ] = E [X 2]− (E [X ])2 =

∫ b

a

x2

b − a
dx − (E [X ])2

=
1

b − a

[
x3

3

]b
a

−
(b + a)2

4

=
b3 − a3

3(b − a)
−

(b + a)2

4
=

b2 + ba+ a2

3
−

(b + a)2

4

=
(b − a)2

12

▶ Moment-generating function

MX (t) = E
[
etX

]
=

∫ b

a

etx

b − a
dx =

etb − eta

t(b − a)



Continuous probability distributions

Exponential distribution

From the Poisson process discussed previously, if we denote by random variable T the
time to the first arrival, then the probability that T exceeds some value t is equal to
the probability that no events occur in that time interval of length t. While former
probability is 1 - FT (t), the latter probability pX (0) is zero, which is the probability
that a Poisson random variable X with parameter λt. Replacing:

1− FT (t) =
(λt)0e−λt

0!
= e−λt t ≥ 0

Therefore:
FT (t) = 1− e−λt t ≥ 0

and the ft(t) is:

fT (t) =
dFT (t)

dt
= λe−λt t ≥ 0

This equation define the exponential distribution, which describes the time to the first
occurence of a Poisson event. Note that e−λt is the probability of no events in any
interval of time of length t, whether or not it begins at time 0. In short, the
interarrival times of a Poisson process are independent and exponentially distributed.

▶ Mean
E [T ] =

∫ ∞

0
tλe−λtdt

making u = λt:

E [T ] =
1

λ

∫ ∞

0
ue−udu =

1

λ

[
e−u(−u − 1)

]∞
0

=
1

λ



Continuous probability distributions

Exponential distribution

Note that if λ is the rate at which events occur in a Poisson process, 1
λ

is the average
time between events.

▶ Variance

Var [T ] = E [T 2]− (E [T ])2 =

∫ ∞

0
t2λe−λtdt − (E [X ])2

=
1

λ2

∫ ∞

0
u2e−udu −

1

λ2
=

1

λ2

It easy to show that the coefficient of variation VT =

√
Var [T ]

E [T ]
= 1.

▶ Moment-generating function

MX (t) = E
[
etX

]
=

∫ ∞

0
etxλe−λxdx =

λ

λ− t
, for t < λ

Floods affecting construction
Engineers are concerned of the occurrence of a flood exceeding 100 m3 s−1 that can
seriously affect infrastructure. If this streamflow is exceeded once every five years on
average based on historical flow records, what is the change that the infrastructure
construction which is scheduled to last 14 months can proceed without interruptions
or detrimental effects? Suppose that flow exceeding this magnitude are independent
and identically distributed events. The sample mean is t̄ = 5 years, thus λ̄ = 1

5
. From

the exponential distribution, Pr
[
X ≥ 14

12

]
= e−1/5.14/12 = 0.79. Accordingly, the risk

is thus 1-0.79 = 0.21, which is quite high. The solution would be to shorten the
period of construction.



Continuous probability distributions

Exponential distribution

▶ Memoryless property The Poisson process is often said to be memoryless meaning
that future behaviour is independent of its present or past behaviour. This
memoryless trait of the Poisson arrivals and of the exponential distribution is best
understood by determining the conditional distribution of T given that T > t0,
that is, the distribution of the time between arrivals given that no arrivals
occurred before t0:

FT |[T>t0](t) = P[T ≤ t|T > t0] =
P [(T ≤ t) ∩ (T > t0)]

P[T > t0]

For t < t0, the numerator is zero; for t ≥ t0 it is simply equal to P[t0 < T ≤ t].
Thus:

FT |[T>t0](t) =
FT (t)− FT (t0)

1− FT (t0)
=

(1− e−λt)− (1− e−λt0 )

e−λt0

=
e−λt0 − e−λt

e−λt0
= 1− e−λ(t−t0) t ≥ t0

fT |[T>t0](t) = λe−λ(t−t0) t ≥ t0

If τ = t − t0, fT |[T>t0](t0 + τ) = λe−λτ τ ≥ 0

This means that failure to observe an event up to t0 does not alter one’s
prediction of the length of time (from t0) before an event will occur. The future
is not influenced by the past if events are Poisson arrivals. An implication is that
any choice of the time origin is satisfactory for the Poisson process.



Continuous probability distributions

Triangular distribution

This distribution is defined in the range of a ≤ X ≤ b and the pdf is:

fX (x) =


2(x−a)

(b−a)(c−a)
if a ≤ x ≤ c

2(b−x)
(b−a)(b−c)

if c < x ≤ b

0 otherwise

Note that c correspond to the highest triangle vertex and it is the mode of pdf. The
cdf is thus:

FX (x) =


0 if x < a

(x−a)2

(b−a)(c−a)
if a ≤ x ≤ c

1− (b−x)2

(b−a)(b−c)
if c < x ≤ b

1 otherwise

▶ Mean
E [X ] =

∫ b

a
xfX (x)dx =

a+ b + c

3

▶ Varianza

Var [X ] = E [X 2]−(E [X ])2 =

∫ b

a
x2fX (x)dx−(E [X ])2 =

a2 + b2 + c2 − ab − ac − bc

18

This distribution is used in hydrology as an alternative to the uniform distribution to
describe the sample space and the uncertainty of parameters in hydrological modelling.



Continuous probability distributions

The Gamma distribution
As in the case with discrete trials, it is also of interest to ask for the distribution of the
time Xk to the kth arrival of a Poisson process. Now, the times between arrivals, Ti ,
i = 1, 2, · · · , k, are independent and have an exponential distribution with common
parameter λ. Xk is the sum T1 + T2 + · · ·+ Tk . Its distribution follows from repeated
application of the convolution integral fZ (z) =

∫∞
∞ fX (z − y)fY (y)dy , where

Z = X + Y and X and Y are independent. For any k = 1, 2, 3, · · · :

fXk
(x) =

λ(λx)k−1e−λx

(k − 1)!
x ≥ 0

Thus, we say that X follow a Gamma distribution with parameters k and λ. Regarding
that X can be considered as the sum of k independent exponentially distributed
random variables, then:

▶ Mean

E [X ] =

∫ ∞

0
xfXk

(x)dx =
k

λ

▶ Variance

Var [X ] = E [X 2]− (E [X ])2 =

∫ ∞

0
x2fXk

(x)dx − (E [X ])2 =
k

λ2

The denominator of the pdf (k − 1)! is the product of the first (k − 1) natural
numbers and can be written as the standard gamma function Γ(k).



Continuous probability distributions

The Gamma distribution
Γ(k) is applicable also to non integer values of k and is written as:

Γ(k) =

{∫∞
0 uk−1e−udu for k > 0

0 otherwise

Integrating by parts, it can be shown that Γ(k + 1) = kΓ(k) for any k > 0. Also,
when k = 1 Γ(1) = 1 and when k = 1/2 Γ(1/2) =

√
π. The standard gamma pdf,

can be written as:

fX (x) =

{
λ(λx)k−1e−λx

Γ(k)
for x ≥ 0

0 otherwise

for k > 0 and λ > 0. Note that Γ(k) arise here as constant to normalize the function.
k is denominated as the shape parameter as it defines the shape of the pdf and λ the
scaling parameter (see the figures).



Continuous probability distributions

The Gamma distribution
The Γ(k) function is widely used as the incomplete gamma function as:

Γ(k, x) =

{∫ x
0 uk−1e−udu for k > 0

0 otherwise

This can be used to evaluate the gamma cdf:

FX (x) =

{∫ x
0 fX (X )dx = Γ(k,λx)

Γ(k)
for x ≥ 0

0 otherwise

It has been found that empirical distributions of many natural and non-natural
processes that take positive values closely resemble gamma distribution. This
distribution has been implemented to describe phenomena such as maximum stream
flows and the depth of monthly precipitation. In statistics, the gamma distribution is
important because the chi-squared distribution is a particular form of the gamma with
k = ν/2, where ν are the degrees of fredom, and λ = 1/2. The cdf of the chi-squared
distribution is:

F (χ2) =
1

2

∫ χ2

0

(t/2)(ν/2)−1e−t/2

Γ(ν/2)
dt

where t is a dummy variable.



Continuous probability distributions

Maximum flows
Based on a histogram of data of maximum annual river flows in the Weldon River,
USA, between 1930 and 1960, it was assume that the data followed a gamma pdf.
The parameters were estimated and equal to k = 1.727 and λ = 0.00672 cfs−1.

According to these values, µX = k
λ
= 1.727

0.00672
= 256.7 cfs, σX =

√
k

λ
= 190 cfs. Also,

the probability that the maximum flow is less than 400 cfs in any year is

FX (400) =
Γ(1.727,λ400

Γ(1.727)
= 0.71

0.914
= 0.78. No that the values to estimate the numerator

and denominator are taken from tables of the gamma function.



Continuous probability distributions

The Beta distribution
The Beta distribution is uses to model a random variable whose values go from 0 to
1, and thus it is important in decision methods. The beta pdf is given by:

fX (x) =

{
1

B(α,β)
xα−1(1− x)β−1 for 0 < x < 1

0 otherwise

where α and β are parameters that α > 0 and β > 0, and:

B(α, β) =

∫ 1

0
xα−1(1− x)β−1dx =

Γ(α)Γ(β)

Γ(α+ β)

From this two equations, the nth moment is:

E [X n] =
B(α+ n, β)

B(α, β)

Considering that Γ(k + 1) = kΓ(k)) and using this equation, we have:

E [X ] =
α

α+ β

Similarly, considering that Γ(k +2) = (k +1)Γ(k +1) = (k +1)kΓ(k) and simplifying,

Var [X ] = E [X 2]− (E [X ])2 =
αβ

(α+ β)2(α+ β + 1)



Continuous probability distributions

The Beta distribution
The following figures show the pdf and the cdf for different combinations of α and β.

Note that when α = β the pdf is symmetrical and when α = β = 1 is equivalent to
the uniform distribution with a = 0 and b = 1.



Continuous probability distributions

The Weibull distribution
The Weibull distribution approximate closely to many natural phenomena. It has been
used to model, for instance, the time to failure of electrical and mechanical systems.
The pdf is defined as:

fX (x) =

{
β
λ

(
x
λ

)β−1
e−( x

λ )
β

, for x > 0

0 otherwise

And the cdf takes the form:

FX (x) =

{
fX (x) =

β
λ

(
x
λ

)β−1
e−( x

λ )
β

, for x > 0

0 otherwise

where λ > 0. The figures below show the pdf and cdf for different values of β and
λ = 1.

Note than from the definition of the pdf and cdf, if a random variable
X ∼ Weibull (β, λ), then Y = (X/λ)β ∼ exponential (λ = 1), fY (y) = e−y .



Continuous probability distributions

The Weibull distribution

▶ mean

E [X ] = λΓ

(
1 +

1

β

)
▶ variance

Var [X ] = E [X 2]− (E [X ])2 = λ2

[
Γ

(
1 +

2

β

)
−

(
Γ

(
1 +

1

β

))2
]

Note that for β = 1 the Weibull pdf becomes the exponential pdf.

Estimation of low flows
From a ten-years daily average streamflow time series in cfs at the River Pang at
Pangbourne 10-days averages are estimated. From this new aggregated time series,
the minimum annual 10-days average flows are estimated. The ranked values are:
13.4 25.7 32.2 35.9 40.0 40.0 40.4 50.7 58.2 71.4. Regarding that the
Weibull distribution is associated with the extreme value theory, the distribution can
be applied to minima. Estimating the mean and the variance from the data and using
the equations yield by the method of moments (see the equations above), one can
resolve this two equations iteratively for the shape parameter β and for the scale
parameter λ. Alternatively, the methods of likelihood can be used iteratively. An
alternative procedure is to used the least-squares procedure from the cdf. So from the
cdf:

ln(xi )− ln(λ) =
[ln [− ln (1− FX (xi ))]]

β



Continuous probability distributions

Estimation of low flows
Applying the plotting position, which is the probability at which xi should be plotted,

we have FX (xi ) =
(i−0.35)

n
, and letting zi = ln(xi ) and yi = ln [− ln (1− FX (xi ))], we

obtain:
zi =

yi

β
+ ln(λ) + ϵ

where i is the rank of the data in ascending order, n is the number of data values and
ϵ is an error term in the regression. Applying the least-square fit to this equation for
n = 10:

β̂ =

∑n=10
i=1 (yi − ȳ)2∑n=10

i=1 (yi − ȳ) (zi − z̄)
= 2.59

and
λ̂ = e(z̄−ȳ/β̂) = 44.85m3/s

where z̄ = 1
10

∑n=10
i=1 zi and ȳ = 1

10

∑n=10
i=1 yi . This linear relationship between z and y

represent the least-squares fit of the data to the two-parameter Weibull distribution
(see figure). The approximate lower 99% confidence limit for β

is β̂
2n
x22n,0.99 = 2.59

20
8.26 = 1.07. Also, quantile esti-

mates can be obtained using the estimates of the
Weibull parameters and the preceding equations.
For example the annual minimum 10-day flow with
a return period of 10 yrs is:

y10 = ln

[
− ln

(
1−

1

10

)]
= −2.25

x10 = e

[(
y10
β̂

)
+ln(λ̂)

]
= 18.8m3/s



Continuous probability distributions

The Normal distribution
The Normal or Gauss distribution originally emerged in the study of experimental
errors. This errors are differences between observations recorded under unchanged
similar experimental conditions. In telecommunications, errors are used to be known as
noise, which is, in general, the difference between the true estate and the observation.
The Normal distribution is thus ideal to represent such error when they are of an
additive nature. The pdf of the Normal distribution of a random variable X is:

fX (x) =
1

σ
√
2π

e

[
− 1

2

(
x−µ
σ

)2
]
, for −∞ < x < ∞

This pdf is especified by two parameters: the mean or location parameter (µ) and the
standard deviation or scale parameter (σ), computed from the population. In
practices, it is common to use the standardized curve with the transformation of X
into Z as Z = X−µ

σ
, so the pdf is:

fZ (z) =
1

σ
√
2π

e(−
1
2
z2)

When µ = 0 and σ = 1, the pdf is:

fZ (z) =
1

√
2π

e(−
1
2
z2)



Continuous probability distributions

The Normal distribution
Note that the cdf can only be calculated using numerical methods and it is:

FX (x) = Pr [X ≤ x] = Pr

[
Z ≤

X − µ

σ

]
= Pr [Z ≤ z]

=

∫ z

−∞

1
√
2π

e
−
(

u2

2

)
du, for −∞ < z < ∞

Because of the symmetry of the pdf, fZ (−z) = 1− fZ (z). Below, some properties of
the normal distribution:
▶ A linear transformation Y = bX + a of a random variable X with N ∼ (µ, σ2)

makes Y an N ∼ (bµ+ a, b2σ2) random variable.

▶ If Xi i = 1, 2, · · · , n are independent and identically distributed random variables
from a population with mean µ and standard deviation σ, then the random

variable X̄n =
∑n

i=1
Xi
n

that is the sample mean, from a random sample of size n

from the sample population, tends to have an N ∼ (µ, σ2/n) distribution as
n → ∞. This important results is called the central limit theorem. The theorem
states that even if the distribution of the random variable Xi is nor normal, the so
called sampling distribution of its mean will tend to normality asymptotically.

▶ If X and Y are independent random variables normally distributed with µX and
µY , and σ2

X and σ2
Y , respectively, the expression Z = X + Y is normally

distributed too with µZ = µX + µY and σ2
Z = σ2

X + σ2
Y . This is also applicable

for Z = X − Y with µZ = µX − µY and σ2
Z = σ2

X + σ2
Y . If X and Y are not

statistically independent but correlated, Z is still normally distributed bu
σ2
Z = σ2

X + σ2
Y + 2ρσXσY , where ρ is the linear correlation between X and Y .



Continuous probability distributions

Streamflows
Annual average discharges in river X are distributed following a
N ∼ (400, 502).Annual average discharges of a tributary Y of river X are distributed
as N ∼ (145, 762). Downstream of the mouth of river Y , there is an outflow D to
supply water to agricultural fields. Downstream of D, annula avearge discharges in
river X are distributed as N ∼ (425, 91.52). Assuming that X , Y and D are
independent, the pdf of annual average discharges in D is normal with
µD = 300 + 145− 425 = 20 and σ2

D = 91.52 − 762 − 502 = 9.812. The probability

that D > 30 can be estimated as z = 30−20
9.81

= 1.0194 and FZ (z = 1.0194) = 0.846.
So the Pr [D > 30] = 1− 0.846 = 0.154. If X , Y and D are not independent and
ρX ,Y = 0.15 and ρX ,D = −0.35 (under the assumption that that the lower the
streamflow in X the greater the flow derived by D), µD = 20 and
91.52 = 97.02612 + σ2

D − 2(−0.35)(97.0361)σD , from where σ2
D = 23.492. For this

case, the Pr [D > 30] = 0.3352.



Continuous probability distributions

The Lognormal distribution

We know that the addition of large number of small random effects will tend to make
the distribution of the aggregate approach normal. In contrast, if the phenomena
arises from the multiplicative effect of a large number of uncorrelated factors, the
distribution tend to be Lognormal, that is, the logarithm of a random variable X
becomes normally distributed. Phenomena such as the particle size of sediment
samples are Lognormal, and the interarrival times of earthquakes. As this distribution
of defined for non-negative values is used to describe daily average streamflows,
maximum streamflows, and daily, monthly and annual rainfall. If X is a positive
random variable, then Y = ln(X ). Accordingly, if Y has N ∼ (µY , σY 2 ), X has a
Lognormal distribution LN ∼ (µln(X ), σ

2
ln(X )

). So the pdf is:

fX (x) =
1

xσln(X )

√
2π

e

[
− 1

2

[
ln(X )−µln(X )

σln(X )

]2]
, for 0 ≤ x < ∞

See the figure below with plot of the Lognormal pdf.

The expectation operator can be written as:

E [X r ] =

∫ ∞

0
x r fX (x)dx

=
1

σln(X )

√
2π

∫ ∞

−∞
ery e

[
− 1

2

[
y−µln(X )
σln(X )

]2]
dy



Continuous probability distributions

The Lognormal distribution

From where E [X r ] = E
[
eYr

]
;Y ∼ N

(
µln(X )], σ

2
ln(X )

)
, so

E [X r ] = MY (r) = e
rµln(X )+

1
2
r2σ2

ln(X ) . Thus , the mean is:

µX = E [X ] = e

[
µln(X )+

1
2
σ2
ln(X )

]

and the variance is:

σ2
X = E [X 2]− µ2

X = e
2
[
µln(X )+σ2

ln(X )

]
− e

2
[
µln(X )+

1
2
σ2
ln(X )

]
= µ2

X

(
e

[
σ2
ln(X )

]
− 1

)
When the Lognormal distribution is defined upon an a value, this is called the
three-parameters Lognormal distribution or the Gibrat-Galton distribution, that is,
LN(a, µln(X ), σ

2
ln(X )

. Accordingly, the transformation becomes Y = ln(X − a) so the

pdf is:

fX (x) =
1

(x − a)σln(X−a)

√
2π

e

[
− 1

2

[
ln(X−a)−µln(X−a)

σln(X−a)

]2]
, for a ≤ x < ∞

where the mean is:

µln(X−a) = ln (µX − a)−
1

2
ln

[
1 +

(
σX

µX − a

)2
]

and the variance is:
σ2
ln(X−a) = ln

[
1 +

(
σX

µX − a

)2
]



Some discrete and continuous probability density functions



Some discrete and continuous probability density functions



Characteristics functions of some probability distributions



Multivariate distributions
Here, the multivariate type of distribution is examined for jointly distributed random
variables. For instance the exponentially distributed storm intensity and duration lead
to a bivariate exponential distribution or intensity and duration considering the
correlation between these two variables. While the bivariate normal distribution is
examined in detail other types are discussed briefly.

The Bivariate normal distribution
The joint distribution of two random variables X and Y , each normally distributed is
called the bivariate normal distribution. The pdf in standardized form is given for Z1

and Z2 as:

fZ1,Z2
(z1, z2) =

[
2π

(
1− ρ2

)1/2]−1
e

[
−(z21−2ρz1z2+z22)

(2−2ρ2)

]
, for −∞ < z1, z2 < ∞

where r , −1 ≤ ρ ≤ 1, is linear correlation coefficient between the two variables. Note

also that Z1 = X−µX
σX

and Z2 = Y−µY
σY

where −∞ < µX , µY < ∞ and σX , σY > 0. In

terms of X and Y (−∞ < x , y < ∞) the bivariate normal distribution is:

fX ,Y (x , y) =
1

2πσXσY

√
1− ρ2

e

[
− 1

2(1−ρ2)

[(
x−µX
σX

)2
−2ρ

x−µX
σX

y−µY
σY

+
(

y−µY
σY

)2
]]

This figure shows the relationship of compressive
strength and density in concrete. In general, the
bivariate distribution shows how upon one variable
is possible to predict the performance of another.



Multivariate distributions

The Bivariate exponential distribution

There are many others useful bivariate distribution, this is case of the bivariate
exponential distribution whose cdf is:

FX ,Y (x , y) = 1− e−ax − e−by − e−ax−by−cxy , for x , y ≥ 0

where a, b, c > 0 are parameters of the distribution.

The Bivariate logistic distribution

The cdf of the bivariate logistic distribution in its basic form is:

FX ,Y (x , y) =
(
1 + e−x + e−y

)−1
, for x , y ≥ 0
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