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Generalities

» Engineers must deal with different types of risks derived from natural and
anthropogenic actions.

» Extremes events, such as , and can trigger human,
economical and environmental losses.

» This means that civil and environmental engineering design must consider the
occurrence of extremes events, even these seldom arise.

» The analysis of extreme events is made based on historical data, usually recorded
at daily time scales, of streamflow, rainfall, water levels, temperature, wind, etc.
from where probability distribution of extremes are obtained.

> However, because of the length of records, usually the number of extreme values
is low and thus the precision of the estimation of the probability distribution
decrease.



Hazard, vulnerability and risk

Extreme hydrological event triggers negative effect on economy, environment and
population. To understand the these effects is necessary to define the following
concepts in the study of extremes.

Hazart (A)

Hazard is the probability that either a natural or anthropogenic event is potentially
harmful. Hazards are related to atmospheric, hydrologic, geologic, geothecnical and
fires phenomenons that due to their location, severity and frequency are potentially
dangerous. For instance, high streamflow is a natural hazard that threat surrounding
population. Hazard can be estimated as:

A= P[H > h|

for a period of time t where H is the variable that describe the phenomena, h is the
magnitude of H and P[] is the probability of excendance during t.

Vulnerability (V)

Vulnerability is the susceptibility of an exposed element to being affected by a hazard.
It depends on the degree of exposure (E) of the element to the hazard and on its
resistance or resilience (R) to withstand and absorb the impacts of that hazard.



Hazard, vulnerability and risk

Risk is defined as the probability of damage of an exposed element upon a hazard.
Risk is thus equivalent to the union of a hazard and its vulnerability as shown in the

following equation:

E
R=AQV=AQ —
® ®R

where the ® represent a tensor product. This equation shows that to decrease risk,
one need to reduce hazard or exposure and increase resilience. There are some hazard
that are difficult to reduce such as earthquakes but it is possible to increase the
resistance (e.g. anti-earthquake constructions). If the negative effects are represented
by the disadvantage scenario S, and if this scenario leads to severe consequences C
due to the hazard, then the risk can be estimated as the probability of SN C, which is
a measure of both the probability and the severity of the negative effects. That is:

R = P[S N C] = P[S]P[C|S]

where R is the probability of the negative scenario and its severity, P[S] is the
probability of the current scenario S and P[C|S] is the conditional probability of the
severity given the occurrence of S. Note that in hydrological systems P[S] = A.



Hazard, vulnerability and risk

Risk can also be estimated as the magnitude of the failure condition as the expected
value of the losses (L), the measure of the adverse consequences, as:

R=E[L] = Z L:P[L]]

i=1

where i = 1,--- , n are the loss scenarios, L; is the loss associated to the ith scenario,
and P[L;] is the probability associated to the occurrence or L;. For instance, in the
case of flood, L; can represent minor losses, L, moderate losses and L3 severe losses.
Each level of loss is associated to an scenario e.g. the return period of a flood, and
scenarios are mutually exclusive and collectively exhaustive. The probability of each
level of loss (L;) is given by:

PIL] = PILiIS]IPIS]]
j=1

where m is the number of scenarios, and P[L;|S;] is the probability of a level of loss L;
given the occurrence of scenario S;. Risk can thus be estimated as:

R:E[L]XH: zm:P[Li|Sj]P[SJ'] Li
i=1 \ j=1

Note that the scenarios S; must be defined following the study case (e.g. floods,
droughts), and can describe different magnitudes of the same study case.



Return period

Return period

The concept of return period is important to the analysis of extreme events. To
define it is important remember the concept of independent events where two events
A and B are statistically independent when the ocurrence of B does not affect the
ocurrence of A and viceversa. This means that P[A|B] = P[A] and P[B|A] = P[B].
Note that statistically independent events can be analysed independently of the order
of occurrence. To understand this concept, the following example is analysed.

Return period in reservoir

Consider a reservoir designed to control floods, where the main outflow structure is
sized based on the allowable downstream flood discharge. Under normal conditions,
water flows through the structure and the reservoir does not store any volume. When
the incoming streamflow exceeds the structure’s design capacity, only a fraction of the
flow passes through the structure while the remaining portion is stored, attenuating
the flood peak. The reservoir is also equipped with a spillway that evacuates flow
when the water level exceeds an admissible limit. For this reason, the design flow for
the spillway corresponds to a relatively infrequent event. Suppose that the reservoir’s
performance is analyzed over a 50-year period, which is the useful life of the system.
For the analysis, the highest annual inflows are considered to determine whether they
exceed the spillway capacity. This problem can be analysed after supposing the
occurrence of , so that, the data can be described using a

considering that each flow event is independent and with probability p
that the maximum annual flow exceed the spillway capacity.



Return period

Return period in reservoir

Suppose that p = 0.01, so that, What is the probability that inflows exceed the
spillway capacity in exactly five of the 50 years of the system’s useful life? Using the
binomial pdf we have:

( % ) 0.015(1 — 0.01)* = 0.000135

This show that the probability is quite low. However, when the number of year is
reduced from five to two, the probability increases to 0.0756. So that, the probability
of the system failure during its useful life increases as the number of years of possible
occurrence decrease. Also, while the probability of no occurrence of floods during the
system’s useful like that surpasses the spillway capacity is 0.6050, the complement

1 — 0.6050 = 0.3950 indicate the probability of hydrological risk of the system.



Return period

Return period

Return period in reservoir

Another interesting question would be to compute the number of years N until the
first occurrence of a flood that surpasses the spillway capacity. Considering N as a
random variable that follow a geometric distribution. If Q; represent the maximum
flow in the year i and the maximum flows are independent events, the probability that
the time interval between exceeds T of a flood of magnitude g being equal to n is:

PIT = n] = P[Q1 < q]P[Q2 < q]P[Qs < q]P[Q < q] - P[Qn—1 < q]P[Qn > ]
If Q are equally distributed:
PIT=n=(P[Q<q])" ' PIQ>ql=(1-p)""p
which is the geometric pdf. The geometric cdf is thus:
P[T >n]=(1-p)"p

If one want to estimate the probability that T > 10, applying this equation, one has
P[T > 10] = 0.9044, for P[T > 25] = 0.7778 and P[T > 100] = 0.366. Note that
the probability of the spillway capacity being surpassed for the first time decreases
progressively over time.



Return period

The return period is thus defined as the expected value of the time (usually years)
between exceedances of a specific streamflow value, that is:
1 1

EM=Tr =505~ »

For the reservoir example, this was designated for Tg = 1/p = 1/0.01 = 100 years. In
the case of minimum flows, The return period is the expected value of the time
between magnitudes less than or equal to an specific value.

Return period of river water levels

The time series of the figure represent the 1s e T
minimum annual water levels in the Nile River at B e e e

the El Cairo station between 622 and 1284. : q I

According to the definition of Tg, p is the 13
probability for any year the river water level goes
below or equal to a specific value and its inverse
value is Tg. Suppose that specific values is 9.66

Nivel (m)

m. Analysing the time series, we can get that the

average time between events where the river

goes below 9.66 m is 101.5 years, which is a
expected value or the Tr. Note that the
probability of occurrence of water level under
9.66 m is thus nearly 0.01.
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Return period

Hydrological risk

According to the definition of risk, this involves the hazard of an certain elements.
The hydrological risk (Rj) is defined as the probability that the exposed element is
affected by the hazard at least once during an exposure period of n years, that is:

Ry =P[T <n]=1-(1-p)"

Note that the hazard is defined by the probability p = %R and that Ry, is the
complement of the probability that the exposed element is not affected by the hazard
during the exposure period of n years, this means, it is the complement of (1 — p)”.
The hydrological risk is also known in the literature as the failure risk. The
hydrological risk is important in the design of hydraulic structures because these are
designed for a design period (Tp) and a service life of n years. Accordingly, R, can be

written as: "
Ro—1— (1 - 7)
Tp

For instance, an structure with a service life of 25 years and an acceptable hydrological
risk of 15%, the design period can be estimate from this equation and it is 154 years.
It is expected that with a probability of 0.15, this could be surpassed at least once in
the 25 years of service life. Note that is bad practice in design to make Tp = n
because R, = 2/3, which is quite high.



The purpose of the frequency analysis of extreme hydrological events
The frequency analysis of extreme hydrological events seeks to estimate hazards and
in particular to answer the following questions:

» What is the of, for instance, a flood occurred in the XXXX year at
the YY location where the water lever rise to ZZ m?
» What the water level in the river XX at the YY location for a NN return period?
This question can be considered as the inverse of the aforementioned question.
The frequency analysis can be shown graphically through the frequency curve. An
example of the frequency curve for the weekly average minimum streamflows are
shown in the figure.

7Qmin T

(m/s)

Periodo de retorno 7}, (afios)



The data needed for the analysis

The characteristics needed to the analysis of extreme hydrological events are described
below:

P Use historical time series of records assuming that the data is , which
means that the data does not change in time. Note that this assumption is
partially denied because introduce non-stationary traits to the
data (e.g. long term trends).

» The hydrological variable must be for the porpoise of the analysis. For
instance, if an engineers is designing a bridge over a river, water level and flow
speed are data needed for the design.

» The amount of data must be sufficient to the frequency analysis. As in the
analysis of extreme events the number of data extracted from the data set is
usually low, it is recommended to implement probability distribution with few
parameters. These data must be (from the same
probability distribution). The minimum number of extreme values to perform an
frequency analysis must be between 15 and 30. The larger the number the lesser
the uncertainty in the estimation of the frequency curve.

» The data must come from the same gage in order avoid a mixing of errors.

» The data must represent or come from a homogeneous hydrological regime. This
means that is not correct to mix within the same period, for instance, natural
flows with regulated ones.



The data needed for the analysis

Series are usually a time dependent sequence of data. From the series, the extreme
data extracted can be classified as: 1) and 2)

. While the first type is
extreme data extracted from a block (subset) of data, the second type is data that is
over or under a predefined threshold. The most common first type data set is the

. Annual series are formed after extracting the maximum/minimum
values of the raw time series for each year, where one year is one block. It is also
needed to prove that the values extracted for each year are independent. This means
that they must be separated enough in time so that no physical relationship
(catchment time concentration) between values is possible. An example of annual
series is the maximum annual instantaneous discharge in a river gauge station.
Semesterly series can also be formed when independence and homogeneity are
guaranteed. In this case, the return period is estimated in semesters. Note that the
smaller the block the larger the difficulty to guarantee independence and homogeneity.
In the case of the series formed after extracting maximum/minimum data over/under
a certain threshold, the number of data per block can be greater than 1. For instance
there must be more than one value of an specific year. Because is difficult to establish
a return period from these series, this one serves to define a series of excess, that must
be constituted by n, (number of years) values. In this series, the largest n, values are
selected. In the case of streamflow regimes, the semesterly series make sense,
so the chosen of the block must obey the physical functioning of the natural system.



The data needed for the analysis

Tabla 2.2: Caudales Maximos Instantdneos - E1 Banco

m?/s), Fuente: IDEAM

Afio | Ene | Feb | Mar | Abr [ May | Jun Jul Ago Sep Oct Nov Dic
1972 4424 | 5370 | 5256
1973 | 4047 | 3032 | 2209 | 3440 | 3872 | 4462 | 4574 | 4982 | 7817* | 8398 | 8866 | 9005*
1974 | 6366 | 4224 | 4128 | 4480 | 5996 | 5370 | 4697 | 4295 | 5718 | 8688 | 8714 | 8820*
(1975 | 3633 | 3027 | 4110 | 3584 | 5210 | 5544 | 5927 | 4994 | 6492 | 8081 | 9612* | 9169
(1976 | 6430 | 3216 | 4004 | 5389 | 6055 | 5718 | 4522 | 3218 | 3099 | 5977 | 6791* | 4189
(1977 | 2192 | 2160 | 2336 | 2097 | 3981 | 4786 | 3856 | 3617 | 4033 | 6680 | 7655* | 7561
1978 | 3065 | 1940 | 2728 | 6070 | 6569 | 6643* | 4886 | 3399 | 3898 | 6051 | 6643* | 5540
1979 | 3622 | 2340 | 3262 | 4867 | 6012 | 7138* | 5801 | 4475 | 6164 | 6945 | 8262* | 7952
1980 | 4058 | 3437 | 2345 | 3005 | 3932 | 4740 | 3894 | 3680 | 3585 | 6443* | 6370 | 5546
1081 | 4585 | 3419 | 3511 | 4949 | 8261 | 8452* | 7442 | 4405 | 5330 | 6260 | 6784* | 6753
1982 | 4872 | 3672 | 3570 | 6032 | 7861 | 8665* | 5175 | 3630 | 3510 | 5900 | 5999 | 4664
[ 1983 [ 3450 | 1964 | 2390 | 5040 | 5660 | 5750 | 3651 | 3530 | 3590 | 4664 | 5004 | 4616
1084 | 4361 | 4049 | 4157 | 4110 | 5731 | 6501 | 6129 | 5130 | 6261 | 7952 | 9700* | 8924
1085 | 4531 | 2934 | 3008 | 4157 | 4862 | 4892 | 3615 | 4344 | 4902 | 5808 | 6099* | 5834
1986 | 3135 | 3200 | 3536 | 4924 | 5168 | 5587 | 4784 | 3299 | 3487 | 6216 | 6650* | 5613
1087 | 3042 | 2589 | 2340 | 3377 | 4980 | 4957 | 3761 | 4608 | 4023 | 6172 | 6638~ 5650 |
1088 | 3524 | 2872 | 2984 | 4050 | 4314 | 5850 | 6610 | 6810 | 8108* | 8220 | 9150 | 9458~
1089 | 6534 | 4088 | 4886 | 4662 | 4006 | 4980 | 4704 | 4040 | 6326 | 7270 | 7710* | 6694
1990 | 3360 | 2992 | 2920 | 4124 | 4978 | 4618 | 3568 | 3134 | 3192 | 5538 | 6078* | 5598
1991 | 4196 | 2425 | 3474 | 3879 | 5004 | 4832 | 4164 | 3937 | 4336 | 4875 | 5370 | 5415
1092 | 3116 | 2205 | 2023 | 2467 | 3530 | 3934 | 2781 | 2988 | 3751 | 4257 | 4247 | 4972
1093 | 3446 | 2800 | 3356 | 4718 | 6215 | 6331 | 4505 | 3400 | 5113 | 4697 | 5786 | 6092*
1004 | 4384 | 3246 | 3995 | 5358 | 6193 | 6343* | 5007 | 3516 | 4100 | 5622 | 6295 | 637
1095 | 3958 | 2108 | 3006 | 4728 | 5305 | 6193 | 5358 | 6425* | 6378 | 6638 | 6661*
1996 | 4759 | 3727 | 5406 | 5025 | 6371 | 6910 | 7048 | 5861 | 5332 | 6993* | 6938
1997 | 3808 | 3786 | 3250 | 3528 | 3528 | 3853 | 3448 | 2481 | 3260 | 3412 | 4034
1998 | 1517 | 2834 | 2184 | 4098 | 4886 4960 4180 4043 4426 5173 \ 5583




The data needed for the analysis

Tabla 2.3: Caudales Maximos Instantdneos - El Banco (m®/s), Cont. Fuente: IDEAM

Afio [ Ene [ Feb [ Mar | Abr | May [ Jun [ Jul [ Ago [ Sep [ Oct | Nov Dic
1999 4942 4545 | 5034 | 4978 5677 5331 | 5284 | 4152 | 5331 | 5959 | 6233* | 6016
2000 5611 3439 | 3898 | 4307 5210 5480 | 5303 | 4244 | 5052 | 5452 5611 4711
2001 | 3501 | 2114 | 3251 | 2887 l 3736 3962 | 3064 | 3020 | 3331 | 4125 4757 4821
[ 2002 | 4508 | 2184 | 2887 | 4307 | 4517 | 5284 | 4499 | 2022 | 3082 | 4034 | 4868 | 3817
(2003 | 3064 | 1879 | 2463 | 4225 | 4162 | 4858 | 4453 | 3754 | 3457 | 4914 | 5536 | 5658
2004 4766 t 2594 [ 2542 ( 4060 5291 5462 | 3733 | 3587 | 4438 | 5792 | 6600* 6525
2005 3955 | 3892 | 3204 | 3955 5589 5600 | 4480 | 3394 | 3567 | 5612 | 7145* | 7093
2006 4784 [ 3591 l 4034 | 5062 5940 5677 | 5006 | 3654 | 3772 | 4747 5761 5846
2007 r 4854 | 2954 | 3327 [ 5078 6475 | 6625* | 4965 | 4623 | 4832 | 6301 | 6902* | 5888
2008 4399 3313 ] 3591 | 4244 5275 5724 | 5154 | 5154 | 5546 | 5799 6281 6576*
2009 4898 3945 \ 4678 I 5280 5258 4865 | 4755 | 3861 | 3733 | 3792 4931 4092
2010 3156 2066 ] 2862 l 3930 5489 6032 | 6856 | 6856* | 7135 | 7300 | 7900* 7690
2011 6309 3640 ( 4680 | 7330 | 7900* | 6870 | 5196 | 4714 | 4591 | 6131* 7060 7495
2012 | 7135* | 3920 ] 3610 | 5501 | 6069* | 5221 | 3680 | 3590 | 3301 | 4736 4826 4445
2013 2952 2970 | 3356 | 3610 l 5392 l 5526 | 4109 | 3930 | 4266 | 4994 5148 5318
2014 4098 2844 | 3810 | 3860 [ 5123 L4882 3310 | 2817 | 3830 | 4770 5772 5404
2015 3163 3228 | 3090 | 4266 l 4008 ' 4064 | 3347 | 2583 | 2925 | 3016 3620 3393




The data needed for the analysis

Hypothesis test for series

As we have told before data in any type of series must be independent and
homogeneous. The Kendall test to verify that the data is stationary or not, check that
whether p is constant (null hypothesis Hg) or not (non null hypothesis Hy). To apply
the test is needed to estimate:

n—1 n
S= Z Z sgn(x; — x;)

i=1 j=i+1

where x represent the hydrological variable, sgn is the sign function where
sgn(a) =1if a> 0, sgn(a) =0 if a=0 and sgn(a) = —1if a < 0. Once S is
calculated, K is calculated as:

S5—1
v/n(n—1)(2n+5)/18’ er >0
K=14¢0, forS=0
——StL ____ fr$<0

n(n—1)(2n+5)/18

where K follow a normal distribution with N(0,1). Accordingly, Ho is accepted if
—Zo/2 < K < z_y /5, where z, /, is the value of K that follow N(0,1) which is
exceeded with probability a/2, where « is the significance.



Conceptual framework for frequency analysis

Generalities

For a annual series is of interest to estimate the (Tg) for a specific value
q; for instance the Tk for a extreme discharge occurred in a given year. As Tk is the
inverse of the probability p that a value g being equal or exceeded for maximum value
series, and being equal or below for minimum value series, this means that p must be
estimated for a event of interest (minimum or maximum). There are different
equations to estimate p where the results among the equations are similar for short
Tg and they differ for long Tg. A general equation to estimate the probability p is:

i—0.439
n+ 0.526

p =

where i is the order of data; maximum values are sorted in descending order and
minimum values are sorted in ascending order. It is also of interest to estimate the
extreme value g for a given Tr. This Tg in many cases (e.g. Tg = 100 yrs) is larger
than the time series length. For this, the data need to be fit to a probability
distribution to extrapolate up to the Tg of interest. To do this, for a series of annual
maximum streamflows Q, note that p = P[Q > q] = 1 — Fo(q), where Fgo(q) is the
fitted of Q annual extreme values. For a series of annual minimum streamflow

p= P[Q < q] = Fq(q).



Conceptual framework for frequency analysis

Probability distributions for the frequency analysis

Suppose a set of independent random variables X1, X3, --- , X, with a common cdf
Fx(x), where x is an observed value and n is the number of values, usually, equally
spaced, for instance, one year. Additionally, Xmax = max[X1, Xo, -+, Xp], and
Fx,,.. (xmax) is given by the joint probability that X; < xmax, that is:

P[Xmax < Xmax] = P[Xl < Xmax; X2 < Xmaxy -+ 3 Xn < Xmax]

= FXl,Xz,--- ,Xn(Xmax,XmaX7 o 7Xmax)

As X; are independent variables and follow the same probability distribution:
n n
FXmax(XmaX) = H P[Xk < Xmax] = H FXk (Xmax) = [FX(Xmax)]n
k= k=1

If n — oo and if Xnax is standardized and converted into Y, the probability
distribution must be one of the following types:

Type l:  Fy(y) = e 7 for —co<y<oo

= fory>0

Type ll: Fy(y) = { 0 o £ 0

Type ll: Fy(y { T fory <0

1fory>0



Conceptual framework for frequency analysis

Probability distributions for the frequency analysis

This types can be the following probability distributions:
» Type |: Exponential, Gamma, Weibull, Normal, Lognormal, Logistic and Gumbel
type |.
» Type |I: Pareto, t-student, Cauchy, Loggamma, Frechet type Il

» Type lll: Uniform, Beta, Weibull type IlI.

Note that the type | distributions are not bounded and do not serve to represent
maximum and minimum values, while the type || distribution are bounded in the
inferior limit and are suitable to fit maximum values. In the case of type Il
distributions, these are bounded in the superior limit and are suitable for minimum
values. Some of these distribution converge slowly to the limit distribution and are
thus unsuitable for the analysis of extreme events. In consequence, there are other
distributions or modifications to some of the distributions mentioned that can be
implemented for the analysis of extremes.



Conceptual framework for frequency analysis

Frequency equation

The frequency equation is given by:
xT = px + Krox

where x7 is the magnitude of the event with a return period T, ux and ox are the
mean and the standard deviation of the distribution, respectively, and Kt are the
frequency factor that depends of the return period and the specific probability
distribution. The equations to estimate the frequency factor are found probability
textbooks. Note that px and ox need to be estimated based in the pdf parameters
estimated based on the annual series.



Conceptual framework for frequency analysis

Estimation of the confidence limits

It is important to point out that the magnitude x of the extreme event with a return
period T is a random variable that follow a pdf. For an ascending sorted annual series
X1:p < Xo:n <00 < X, the pdf of Xk:n is:

B0 = () 0O TBCOI 1= Al )

where fx(x) and Fx(x) are the fitted pdf and cdf, respectively, based on the annual
series. Note that the pdf of X)., has the same characteristics of the pdf fitted to the
annual series and a position of order k. Accordingly, the fdp of X7 is:

B () = (1) ) (m) Bl 1= Bl fer)

where m is the integer fraction of nr and r =1 — % So if fx, (x7) is known, the

confidence limits can be estimated. For instance, to the 90% of confidence, the inferior
and the superior limits must satisfy that Fx, (x7,nf) = 0.05 and Fx, (x7,up) = 0.95.



Conceptual framework for frequency analysis
Estimation of the confidence limits
These equations correspond to the . This is actually the
incomplete Beta function standardized by the Beta function. The exact confidence

intervals can be estimated numerically solving this equations:
I[P; 0" Pie, 0 (L — Pipe)] = 1 — /2

I[P; ”IPsupa n/(l - PS“P)] = a/2

where: _ T(a+b) Ma+b+1) (7, B
/(r ) )_mz(lfz)bﬁ’m\/o't(l*t)b ldt

and n’ = (n+ 1). Note that int the equation for I[], z= P, a = n’Pj,r or a = n’ Ps,p,
and b= n'(1 = Pjyr) or b= n'(1 — Psyp). The problems is to find the values of a and
b using the two equations for a given value of oo P. Suppose that one want to
estimate the confidence limits for a 90% confidence for the value from the frequency
curve that correspond to a return period of T = 50 years. The equations above are
solved fora =1 —-0.9=0.1and P=1— % =1-1/50 = 0.98. Note that
traditionally, the confidence limits for x; have estimated assuming that X+ follow a

, so the confidence limits can be estimated approximately as:

XTine = XT — Za /25T

XToap = XT + 20 /25T

where « is the level of significance, z, /, is the value of the standardized variable
which is exceeded with probability a/2, and st is the estimate of the standard
deviation of the event with a return period T. Note that st is usually estimated using
the Moments or the Maximum-likelihood methods.



Conceptual framework for frequency analysis

Confidence limits of return period

The exact confidence limits for the 90% of confidence of the frequency curve of
instantaneous maximum streamflows for the Banco station at the Magdalena river
(see the tables with data given before) are shown in the table below:

Eventos méximos, n = 43
T B P Psup
200 | 0,9950 | 0,963231 | 0,999012
100 | 0,9900 | 0,950650 | 0,998287
50 | 0,9800 | 0,930480 | 0,996320
20 | 0,9500 | 0,881810 | 0,985803
10 | 0,9000 | 0,813100 | 0,958130
5 0,8000 | 0,691840 | 0,886643
3 0,6667 | 0,545608 | 0,775791
2 0,5000 | 0,377840 | 0,622160
1,25 | 0,2000 | 0,113360 | 0,308154

Note that the equations given before are solved for: n = 43 (# of years), « = 0.1, and
various values of T. The equations are solved to find the values for Pj,r and Psyp
given in the table. The confidence limits can then be estimated using the fitted as
X7y = F71(Pinr) and XToup = F=1(Psup).



	Definitions and analysis of extreme values
	Generalities
	Hazard, vulnerability and risk
	Return period

	Frequency analysis of extreme hydrological events
	The purpose of the frequency analysis of extreme hydrological events
	The data needed for the analysis
	Conceptual framework for frequency analysis


