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Gumbel distribution

The Gumbel distribution is equivalent to the to asymptotic distribution type I and
result from a basic exponential distribution. The Gumbel distribution has two
parameters: the scale parameter α and the position parameter b, and is given for
maximum values represented by X , where:

fX (x) =
1

α
e

[
− x−b

α
−e

(
− x−b

α

)]
, for −∞ < x < ∞

The cdf is:

FX (x) = e

[
−e

(
− x−b

α

)]

and µX = b + 0.5772α and σ2
X = π2α2

6
and the asymmetry coefficient γ1 = 1.1396.

The quantile of this distribution is:

x(F ) = b − α ln(− lnF )

where x(F ) is the value of X for which the cdf value is F . This equation is equivalent
to:

xT = b − α ln

[
− ln

(
1−

1

T

)]
where T is the return period and xT is the magnitude of the extreme event associated
to this.



Gumbel distribution

The parameter estimation in the Gumbel distribution can be performed using different
methods such as the Moments and the Maximum-Likelihood. The frequency factor
KT for this distribution when n → ∞, converge asyntotically to:

KT = −
√
6

π

[
0.5772 + ln

(
ln

(
1−

1

T

))]
On the other hand, for a value of the annual series, the frequency factor as a function
of the size series, can be estimated as:

Km =
ym − ȳ

sy

where:

ym = − ln

[
− ln

(
n + 1−m

n + 1

)]
Note that the data are sorted in descending order; from the largest (m = 1) to the
smallest (m = n). ȳ = 1

n

∑n
m=1 ym and s2y = 1

n

∑n
m=1(ym − ȳ)2. For a return period

T , the frequency factor is:

KT =
yT − ȳ

sy

where yT = − ln
[
− ln

(
1− 1

T

)]
. Comparing the two equations to compute KT the

later equations provide larger results of KT than the former one. This value is
progressively larger as much as n decrease. This means that the shorter the series the
larger the values of xT .



Gumbel distribution

Estimation of the standard deviation sT using different methods:

▶ Method of Moments

s2T =
s2X
n

[
1 + KTγ1 +

K2
T

4
(γ2 − 1)

]

where γ1 = 1.1396 and γ2 = 5.4002

▶ Method of Maximum-Likelihood

s2T =
α̂2

n

[
1 +

6

π2
(1− 0.5772 + yT )

2

]
▶ Method of MPP

s2T =
α̂2

n

[
1.1128 + 0.4574yT + 0.8046y2

T

]



Gumbel distribution

So far, we have analysed annual series of maximum values using the Gumbel
distribution. However, this distribution can be used to analyzed minimum values Z so
the pdf is:

fZ (z) =
1

α
e

[
z−b
α

−e

(
z−b
α

)]
, for −∞ < z < ∞

and the cdf is:

FZ (z) = 1− e

[
−e

(
x−b
α

)]

The µZ = b − 0.5772α, σ2
Z = π2α2

6
and the asymmetry coefficient is γ1 = −1.1396.

The quantile is:
z(F ) = b + α ln(− ln(1− F ))

where z(F ) is the value of Z for which the cdf value is F . This equation is equivalent
to:

zT = b + α ln

[
− ln

(
1−

1

T

)]
Similarly, the parameter of the distribution can be estimated using different methods.



Gumbel distribution

When n → ∞ asymptotically, the frequency factor KT converge to :

KT =

√
6

π

[
0.5772 + ln

(
− ln

(
1−

1

T

))]
On the other hand, for a value of the annual series, the frequency factor as a function
of the size series, can be estimated as:

Km =
ȳ − ym

sy

where:

ym = ln

[
− ln

(
m

n + 1

)]
Note that the data are sorted in ascending order; from the smallest (m = 1) to the
largest (m = n). ȳ = 1

n

∑n
m=1 ym and s2y = 1

n

∑n
m=1(ym − ȳ)2.

For a return period T , the frequency factor is:

KT =
ȳ − yT

sy

where yT = − ln
[
− ln

(
− 1

T

)]
.



Pearson type III and Log-Pearson type III distributions

The pdf of the Pearson type III distribution is:

fX (x) =
1

aΓ(b)

(
x − c

a

)b−1

e

[
−
(

x−c
a

)]

where the parameters a, b and c are the scale, the shape and the position,
respectively. Note that b > 0 and that c < x < ∞. If c = 0, the pdf is reduced to the
Gamma distribution. Despite a can be either positive or negative, if a < 0 the pdf is
bounded above, this means that x < c and it is not suitable to analyse maximum
extreme events. Using the methods of Moments:

▶ Mean
µX = c + ba

▶ Variance
σ2
X = ba2

▶ Asymmetry coefficient

γ1 = sgn(a)
2
√
b

where sgn is the sign function.

Sometimes, the annual series are transformed using the logarithm function and the
data is fitted to the Pearson type III distribution, which is equivalent to the
Log-Pearson type III distribution. This distribution is commonly used to analyse
maximum streamflows and requires that b > 1 and a > 0. The equations to estimate
the frequency factor are given in textbook tables.



Weibull distribution
The Weibull distribution is equivalent to the asymptotic type III distribution, and is
popular to the analysis of annual series of minimum values Z . The pdf is defined as:

fZ (z) =
( κ

α
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z − b

α

)κ−1

e
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−
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z−b
α

)κ]

where z ≥ b, α > b and κ > 0. The cdf is:

FZ (z) = 1− e

[
−
(

z−b
α

)κ]
Some expressions are:
▶ Mean

µZ = b + αΓ
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1

κ

)
▶ Variance
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)
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(
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▶ Asymmetry coefficient
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Γ
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)
− 3Γ

(
1 + 1

κ

)
Γ
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)
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Γ
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)
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(
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κ

)]1.5
where Γ(.) is the Gamma function.

The inverse of the Weibull cdf is:

z(F ) = b + α [− ln (1− F )]1/κ

Note that when κ = 1 this distribution becomes the exponential distributio. Other
properties of the Weibull distribution are given in textbooks tables.



Fréchet distribution
The Fréchet distribution is equivalent to the asymptotic type II distribution. The pdf
is defined as:

fX (x) =
θ

a

(a

θ

)θ+1
e

[
−( a

x )
θ
]

where x > 0, and the scale and shape parameters are a > 0 and θ > 0, respectively.
The cdf is:

FX (x) = e

[
−( a

x )
θ
]

Some expressions are:
▶ Mean

µX = aΓ

(
1−

1

θ

)
valid when θ > 1

▶ Variance
σ2
X = a2

[
Γ

(
1−

2

θ

)
− Γ2

(
1−

1

θ

)]
VX =

[
Γ(1− 2/θ)

Γ2(1− 1/θ)
− 1

]0.5
where the functions for σ2

X and VX are valid for θ > 2.
The quantile for the Fréchet pdf is given:

x(F ) = a(− lnF )−θ

Regarding to the exponential positive shape for θ > 0, x(F ) increases faster than the
Gumbel distribution when F increase. This means that Fréchet distribution produces a
frequency curve of larger magnitudes. These two distributions are related through the
logarithm transform, because when X follow a Fréchet pdf with parameters a and θ,
Y = ln(X ) follow a Gumbel pdf with parameters α = 1/θ and b = ln(a). Other
properties of the Fréchet distribution are given in textbooks tables.



GEV distribution
The Generalized Extreme Value (GEV) distribution is used for extreme maximum
values, usually meteoroligical data. The pdf is:

fX (x) =
1

a

[
1−

b

a
(x − c)

](1−b)/b

e−[1− b
a
(x−c)]1/b

and the cdf is:

FX (x) = e−[1− b
a
(x−c)]1/b

where a > 0, b and c are the parameters of scale, shape and position, respectively. If
b > 0 the distribution is bounded above representing a type III distribution which is
useful for the analysis of extreme mimimum events. In contrast, if b < 0 the
distribution is bounded below equivalent to a type II distribution suitable for extreme
maximum events. If b = 0, the GEV distribution is transformed to a Gumbel
distribution.
The fist two moments are:

▶ Mean
µX = c +

a

b
[1− Γ(1 + b)]

▶ Variance
σ2
X =

a2

b2
[Γ(1 + 2b)− Γ2(1 + b)]

where Γ(r) is the Gamma function evaluated in r . Note that while the equation
for µX is valid for b > −1, the equation for σ2

X is valid for b > −0.5. A quantile
is computed as:

x(F ) = c +
a

b

[
1− (− lnF )b

]
Other properties of the GEV distribution are given in textbooks tables.



Pareto distribution

The Pareto distribution is commonly used to analysed variables with long, straight
tails. This distribution was initially implemented to analysed the wealth distribution in
society where a low percentage concentrate the largest wealth. The pdf classic Pareto
distribution or Pareto I distribution is:

fx (x) = aI c
aI
I xaI−1

where x > cI and aI > 0. cI and aI are the position and shape parameters,
respectively. The cdf is:

FX (x) = 1−
( cI

x

)aI

The fist two moments are:

▶ Mean
µX =

cI aI

aI − 1

Note that this is valid when aI > 1, and ∞ on the contrary.

▶ Variance

σ2
X =

(
cI

aI − 1

)2 aI

aI − 2

when aI > 2. If 1 < aI ≤ 2, σ2
X = ∞, and not exist when aI ≤ 1.



Pareto distribution

The Pareto I distribution is embeded in a more general Pareto II distribution. The pdf
of this distribution is:

fX (x) =

{
1
b

(
1− a x

b

) 1
a
−1

for a ̸= 0
1
b
e(−

x
b ) for a = 0

The cdf is:

FX (x) =

{
1−

(
1− a x

b

) 1
a for a ̸= 0

1− e(−
x
b ) for a = 0

where b is the scale parameter. Including a third parameter c, the position parameter,
the pdf of the Pareto III distribution is:

fX (x) =

 1
b

(
1− a x−c

b

) 1
a
−1

for a ̸= 0

1
b
e

(
− x−c

b

)
for a = 0

The cdf is:

FX (x) =

1−
(
1− a x−c

b

) 1
a for a ̸= 0

1− e

(
− x−c

b

)
for a = 0

Note that when c = 0, the Pareto III distribution becomes the Pareto II distribution.
Also, when a < 0 and c = 0 becomes the Pareto I distribution with aI = 1/a and
cI = −b/a.



Frequency curves for minimum events

▶ The commonly implemented probability distributions to analysed annual series of
minimum events are: Weibull, Gumbel, Lognormal, Pearson type III and GEV. In
the case of the Gumbel distribution, which is a unbounded distribution, can cause
problem because negative values of the analysed variable can arise that are not
realistic as is the case of some hydrological variables.

▶ These distribution can be fitted to the annual series of minimum values
zi , i = 1, · · · , n using a data transformation, that consist in multiplying the data
by −1, which means that xi = −zi . This means that low values becomes high
values and vice-versa. Thus, the fit of the probability distribution is made based
on a annual series of maximum values xi . At the end, the quantiles estimated for
the frequency curve must be multiplied by −1 to return to the domain of Z .



Fitting process
The following steps summarize the process of fitting a probability distribution to an
annual series.
1. Establishment of the annual series after applying statistical tests to detect

outliers, and verify independence, homogeneity and stationarity in the series.
Recall, that the size of the series affect in the estimation of the frequency curve
and in the associated uncertainty. The literature thus recommends that the
number of values of the series must be 25-30.

2. Selection of the pdf fX (x)

3. Selection of the methods for parameter estimation θ̂
4. Estimation of magnitudes of events for selected return periods T , which depends

upon the cdf FX (x) and the estimated parameters θ̂. Note that the T values
should be less than 3-4 times the length (number of years) of the series. For
maximum events:

X̂T = F−1
X

[
1−

1

T

]
and for minimum events:

X̂T = F−1
X

[
1

T

]
5. Estimation of the confidence limits for XT for a significance level α. This means,

confidence limits for the frequency curve.
6. Check through Q-Q plots and plots of the frequency curve if the chosen

distribution is compatible with the annual series. Also, the use of the moments
can verify the correcness of the chosen distribution with respect to the annual
series. For instance, when γ1 is close to zero, the Normal distribution could be
considered. On the contrary, other distribution could be more appropriate. Also,
hypothesis tests can be applied such as the Chi-square, Kolmogorov-Smirnov and
Anderson-Darling, to verify the goodness of fit.



Anderson-Darling test
The Anderson-Darling test to verify the goodness of fit of a distribution is more
adequate for the analysis of extreme events, because the test give more weight to the
distribution tails. To perform this test on the following distributions: Gumbel, Fréchet,
Normal, Lognormal, GEV, Gamma, Pearson type III and Log-Pearson type III, the first
requirement is that the parameters estimators must be asymptotically efficient, usually
estimated using the maximum likelihood method. For the Fréchet, Lognormal and
Log-Pearson type III the annual series must be transformed taking logarithms and then
fitted the transformed series to the Gumbel (max), Normal and Pearson type III
distributions, respectively. After adjusting the data to any of these distributions using
the maximum likelihood method the test statistics A2 is estimated using:

A2 = −n −
1

n

n∑
i=1

(2i − 1) [ln(F0(xi )) + ln(1− F0(xn−i+1))]

where xi are sorted in ascending order and F0(xi ) is the cdf evaluated in xi . This is
followed by the estimation of the parameter ω:

ω = 0.116

(
A2 − ξn

βn

)1.1751ηn

+ 0.0403 for ξn ≤ A2

ω =

[
0.116

(
0.2ξn

βn

)1.1751ηn

+ 0.0403

][
A2 − 0.2ξn

βn

]
for ξn > A2

where the parameters ξn, βn and ηn are computed using the expressions in the
following table for different distributions and according to the size n of the annual
series.



Anderson-Darling test



Anderson-Darling test

The Anderson-Darling test shows that if ω < ω∗, where
ω∗ = 0.743, 0.581, 0.461 and0.347 for significant levels of
α = 0.01, 0.025, 0.05 and0.1, H0 is accepted, which means that the annual series can
be represented by the chosen distribution. Alternatively, with the value of ω, F is
calculated as as:

F (ω) =
1

π
√
ω

[
e(−

1
16ω )K1/4

(
1

16ω

)]
+

1

π
√
ω

[
1.118e(−

25
16ω )K1/4

(
25

16ω

)]
for ω < 1.2

F (ω) = 1 for ω ≥ 1.2

where K1/4[.] is the modified Bessel function of order 1/4. If F (ω) < (1− α), H0 is
accepted; the lesser F (ω) the more suitable is the distribution chosen.



Distribution fitting

Annual series of maximum streamflow at Banco station, Magdalena River
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Annual series of maximum streamflow at Banco station, Magdalena River



Distribution fitting

Annual series of maximum streamflow at Banco station, Magdalena River



Distribution fitting

Annual series of maximum streamflow at Banco station, Magdalena River



Generalities

The processes described above can be applied to any type of distribution using the
different parameter-estimation methods. HERERE
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