STOCHASTIC METHODS IN WATER RESOURCES

Unit 2: Hydrological statistics and extremes
Lecture 6: Probability distributions of extremes, distribution selection

Luis Alejandro Morales, Ph.D.

Universidad Nacional de Colombia
Department of Civil and Agriculture Engineering

August 16, 2025



Gumbel distribution

The Gumbel distribution is equivalent to the to asymptotic distribution type | and

result from a basic . The has two

parameters: the a and the b, and is given for
represented by X, where:

1 {_X;b_e(*xgb

)
, for —oo < x < 00

The is:

*;")]

Fx(x) = e[fe(i

and pux = b+ 0.5772a and af( = # and the asymmetry coefficient v = 1.1396.
The of this distribution is:

x(F)=b—aln(=InF)

where x(F) is the value of X for which the value is F. This equation is equivalent
to:
b | I (1 L )
xr=b—aln|—In{1- =
T T
where T is the and x7 is the magnitude of the extreme event associated

to this.



Gumbel distribution

The parameter estimation in the can be performed using different
methods such as the Moments and the Maximum-Likelihood. The
K7 for this distribution when n — oo, converge asyntotically to:

e o sn(n(s- 1))

On the other hand, for a value of the annual series, the as a function
of the size series, can be estimated as:

Ym —Y
Sy

e ()]

Note that the data are sorted in descending order; from the largest (m = 1) to the
smallest (m=n). y = %Z;:I ym and s2 = % S i (ym — )% Fora
T, the is:

Km =

where:

Ky = YT y
Sy
where yr = —1In [7 In (1 — %)] Comparing the two equations to compute Kt the
later equations provide larger results of K7 than the former one. This value is
progressively larger as much as n decrease. This means that the shorter the series the
larger the values of xr.



Gumbel distribution

Estimation of the standard deviation sy using different methods:
» Method of Moments

2
2 _ Sx
ST =
n

K2
L+ K+ = Ln—1)

where 1 = 1.1396 and 2 = 5.4002
» Method of Maximum-Likelihood

6
2= [1 +—(1-05772+ yr)ﬂ
n T

» Method of MPP

N

s2 = & [1.1128 4 0.4574y7 + 0.8046y2]

n



Gumbel distribution

So far, we have analysed annual series of using the
. However, this distribution can be used to analyzed Z so
the is:
—b
1 [z;bfe(za ):|
fz(z) = —e , for —oco <z < 0
o

and the is:

X;")}

Fz(z)=1- e[_E(

The pz = b—0.5772a, 02 = ”26“2 and the asymmetry coefficient is 3 = —1.1396.
The is:
z(F)=b+aln(—=In(1 - F))

where z(F) is the value of Z for which the value is F. This equation is equivalent

to: 1
=b In|—1 1——
zr +o¢n[ n< T)}

Similarly, the parameter of the distribution can be estimated using different methods.



Gumbel distribution

When n — oo asymptotically, the converge to :
6 1
P {0.5772+ In (4“ (1 - 7))}
s T
On the other hand, for a value of the annual series, the as a function

of the size series, can be estimated as:

where:

In|—n—
=In|{—In{——
Ym n+1
Note that the data are sorted in ascending order; from the smallest (m = 1) to the
largest (m=n). y = 130 ym and 2 = 150 (ym — 7)2.
For a T, the is:
y—=yr
Sy

Kr =

where yr = —In[—In (f%)]



Pearson type |ll and Log-Pearson type Ill distributions

The of the Pearson type Il distribution is:

Fe(x) = — (X - C)b_l e[~ (55)]

al (b) a

where the parameters a, b and c¢ are the scale, the shape and the position,
respectively. Note that b > 0 and that ¢ < x < co. If ¢ =0, the is reduced to the

Despite a can be either positive or negative, if a < 0 the is
bounded above, thls means that x < ¢ and it is not suitable to analyse maximum
extreme events. Using the

| 4
pux = c+ ba

>

0% = ba®

>
2
1 = sgn(a)—
gt g()\/B

where sgn is the sign function.

Sometimes, the annual series are transformed using the logarithm function and the
data is fitted to the , which is equivalent to the
Log-Pearson type Il distribution. This distribution is commonly used to analyse
maximum streamflows and requires that b > 1 and a > 0. The equations to estimate
the frequency factor are given in textbook tables.



Weibull distribution

The Weibull distribution is equivalent to the asymptotic type Ill distribution, and is

popular to the analysis of annual series of minimum values Z. The

fz(z) = (H) (z;b)n_le[_(%b)ﬁ]

07

where z > b, a > b and kK > 0. The is:

Faz) =1l ()]

Some expressions are:

»
1
uz:b—i-ar(l—}-f)
K
| 2
2 1
0% = a? [r(1+7>7r2 (1+7)]
K K
»

T+ - Hrasd) oy

is defined as:

<)

e M1+ 2) -2 (14 1))

where I'(.) is the
The inverse of the is:
2(F)=b+al[-In(1 - F)/*

Note that when k = 1 this distribution becomes the
properties of the are given in textbooks tables.

. Other



Fréchet distribution
The Fréchet distribution is equivalent to the asymptotic type Il distribution. The

is defined as: 0+1 [_(2)®
) = 2 (2)" ]
a\g
where x > 0, and the scale and shape parameters are a > 0 and 6 > 0, respectively.
The is: )
Fx(x) = e[-2)’]

Some expressions are:

> 1
,U,X:ar<1—§)

valid when 6 > 1

’ A= (-2) (o)

ri— 0.5
WO LCELTON
r2(1—-1/6)
where the functions for ai and Vx are valid for 6 > 2.
The quantile for the is given:

x(F)=a(—InF)~°
Regarding to the exponential positive shape for 6 > 0, x(F) increases faster than the

when F increase. This means that produces a
frequency curve of larger magnitudes. These two distributions are related through the

, because when X follow a with parameters a and 6,
Y = In(X) follow a with parameters o = 1/60 and b = In(a). Other

properties of the are given in textbooks tables.



GEV distribution

The Generalized Extreme Value (GEV) distribution is used for extreme maximum
values, usually meteoroligical data. The is:
:|(17b)/b

fx(x) = % {1 - S(X —c) e )

and the is:

Fx(x) = e~ 1= 50=a]”?
where a > 0, b and ¢ are the parameters of scale, shape and position, respectively. If
b > 0 the distribution is bounded above representing a type Il distribution which is
useful for the analysis of extreme mimimum events. In contrast, if b < 0 the
distribution is bounded below equivalent to a type Il distribution suitable for extreme
maximum events. If b =0, the is transformed to a

The fist two moments are:
> a
px =c+ AL+ b))
> 2 a 2
ox = E[F(l +2b) — (1 + b)]

where ['(r) is the evaluated in r. Note that while the equation
for ux is valid for b > —1, the equation for oi is valid for b > —0.5. A quantile
is computed as:

x(F)=c+ Z [1 —(=1In F)b]

Other properties of the are given in textbooks tables.



Pareto distribution

The Pareto distribution is commonly used to analysed variables with long, straight
tails. This distribution was initially implemented to analysed the wealth distribution in
society where a low percentage concentrate the largest wealth. The

or is:

filx) = ajc;!x1 71

where x > ¢; and a; > 0. ¢; and a; are the position and shape parameters,

respectively. The is:
Cr\ 2l
Fx(x)=1— (7)
X
The fist two moments are:
>
cjaj
X = ——
i aj — 1
Note that this is valid when a; > 1, and oo on the contrary.
>

02:( cl )2 aj
X a,—l a,—2

when a; > 2. If 1 < a; <2, Jf( = 00, and not exist when a; < 1.



Pareto distribution

The is embeded in a more general . The
of this distribution is:

Fe(x) %(l—a%)a fora#0
X = x
%e(_ﬂ) fora=0
The is: .
1—(1—a%)a f 0
Fx(x) = ((,ﬁc)ab) ora#
1—e\"b fora=0

where b is the scale parameter. Including a third parameter c, the position parameter,

the of the is:
l(l—ax_c)%ﬂ fora#0
fx(x) =< °® (_xfc)b
%e b fora=0
The is: L
1—(1—a%*=<)s fora#0
Fxg= {17250 fora?
1— e( b ) fora=20
Note that when ¢ = 0, the becomes the
Also, when a < 0 and ¢ = 0 becomes the with a; = 1/a and

¢ = —b/a.



Frequency curves for minimum events

» The commonly implemented probability distributions to analysed annual series of
minimum events are: , E , and .In
the case of the , which is a unbounded distribution, can cause
problem because negative values of the analysed variable can arise that are not
realistic as is the case of some hydrological variables.

P> These distribution can be fitted to the annual series of minimum values
zi,i =1,---,n using a data transformation, that consist in multiplying the data
by —1, which means that x; = —z;. This means that low values becomes high
values and vice-versa. Thus, the fit of the probability distribution is made based
on a annual series of maximum values x;. At the end, the quantiles estimated for
the frequency curve must be multiplied by —1 to return to the domain of Z.



Fitting process
The following steps summarize the process of fitting a probability distribution to an
annual series.

1.

w

Establishment of the annual series after applying statistical tests to detect

, and verify , and in the series.
Recall, that the size of the series affect in the estimation of the
and in the associated uncertainty. The literature thus recommends that the
number of values of the series must be 25-30.
Selection of the fx(x)
Selection of the methods for parameter estimation 0
Estimation of magnitudes of events for selected T, which depends
upon the Fx(x) and the estimated parameters 0. Note that the T values
should be less than 3-4 times the length (number of years) of the series. For

maximum events: “ 1 1
X7 =Fy {1 — 7]

and for minimum events: N 11
Xr=F, | =
T M
. Estimation of the for Xt for a significance level a. This means,

confidence limits for the frequency curve.

. Check through Q-Q plots and plots of the frequency curve if the chosen

distribution is compatible with the annual series. Also, the use of the moments
can verify the correcness of the chosen distribution with respect to the annual

series. For instance, when 7 is close to zero, the could be
considered. On the contrary, other distribution could be more appropriate. Also,
hypothesis tests can be applied such as the , and

, to verify the goodness of fit.



Anderson-Darling test
The Anderson-Darling test to verify the goodness of fit of a distribution is more
adequate for the analysis of extreme events, because the test give more weight to the
distribution tails. To perform this test on the following distributions: , ,
, , and , the first

reqwrement is that the parameters estimators must be , usually
estimated using the . For the X and

the annual series must be transformed taking logarithms and then
fitted the transformed series to the and
distributions, respectively. After adjusting the data to any of these distributions using
the the test statistics A? is estimated using:

n

LI %Z(Zi — 1) [In(Fo(x)) + In(1 — Fo(xe_s+1))]
i=1

where x; are sorted in ascending order and Fo(x;) is the evaluated in x;. This is
followed by the estimation of the parameter w

A2 ¢ 1.1751n,
w=0.116 (7) +0.0403  for &, < A?
n
2 1.1751n, A2 —0.2
= [0.116 (oﬁé”) + 0.0403 {ﬁ] for &, > A2
n n

where the parameters £, 8, and 7, are computed using the expressions in the
following table for different distributions and according to the size n of the annual
series.



Anderson-Darling test

Tabla 2.30: Pardmetros para calcular w

Distribucion -
Gumbel / Frechét 0,169 (1 + -l) 0,229 (1 ~oa ’) 1,141 (1+ %8)
Normal y Lognormal 0,167 (1+ %2 | 0,229 (1— 1,147 (14 9&)

I_L_

GEY S 1+—|—— x 1—4"-+“

0145(1+o 17r"+0331'”) 0,186 (H-oam—*l +03r T,194 (1 - 0,04r— 1 — 0,12r—

Gamma

[
o147(1—01ab+021b +0,006%) ' 0,189(1+026+037b +0,176%) ‘ 1,186 (1 — 0,046 — 0,04b% — 0,016°)

sy | (g Y
Peatson Tipo IIL 0L (0, 17zrl ¥0, 33b ) 0186 (1703851 + 0, 3lr 1,194 (1= 0,040~ 1 — 0,12~ %)
Log Pearson Tipo IIT x(1+20-93 _ X(l 9508 4 03) x(1-184+ 014 08)

Para GEV: si b > 0,5, hacer 5= 0,5
Para Gamma o Log Pearson Tipo IIl: sit 0 b < 2, hacer r 0 b = 2
Basado en Laio (2004)



Anderson-Darling test

The shows that if w < ws, where

wx = 0.743,0.581,0.461 and0.347 for significant levels of

a = 0.01,0.025,0.05 and0.1, Hp is accepted, which means that the annual series can
be represented by the chosen distribution. Alternatively, with the value of w, F is
calculated as as:

F(w):% |:e( 1ew)K1/4( L )}Jr% {1 118e(— 1ew)K1/4(12: )] forw < 1.2

F(w)=1forw>1.2

where Kj /4[] is the modified of order 1/4. If F(w) < (1 —a), Ho is
accepted; the lesser F(w) the more suitable is the distribution chosen.



Distribution fitting

Annual series of maximum streamflow at Banco station, Magdalena River
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Figura 2.5: Serie de tiempo de la serie anual de caudales mdximos instantdneos en El Banco



Distribution fitting

Annual series of maximum streamflow at Banco station, Magdalena River
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Figura 2.6: Curvas de frecuencia estimadas con Gumbel para la serie anual de caudales maximos ins-
tantédneos en El Banco



Distribution fitting

Annual series of maximum streamflow at Banco station, Magdalena River
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Figura 2.7: Curvas de frecuencia estimadas con Pearson y Log Pearson Tipo III y Lognormal 3P para le

serie anual de caudales méximos instantdneos en El Banco



Distribution fitting

Annual series of maximum streamflow at Banco station, Magdalena River
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Figura 2.15: Funciones de densidad de probabilidad fx,,.,(z) del maximo caudal en 43 afios en El Banco,
a partir de las curvas de frecuencia ajustadas con Gumbel (MPP) y Lognormal 3P (MV)



Generalities

The processes described above can be applied to any type of distribution using the
different parameter-estimation methods. HERERE
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